Home » R&I Project Hub » CyberSANE » Project White Papers » Towards the Use of Generative Adversarial Neural Networks to Attack Online Resources

Towards the Use of Generative Adversarial Neural Networks to Attack Online Resources

Authors

Lelio Campanile, Mauro Iacono, Fabio Martinelli, Fiammetta Marulli, Michele Mastroianni, Francesco Mercaldo, Antonella Santone

Publication

Workshops of the International Conference on Advanced Information Networking and Applications
WAINA 2020: Web, Artificial Intelligence and Network Applications pp 890-901

https://doi.org/10.1007/978-3-030-44038-1_81 

Abstract

The role of remote resources, such as the ones provided by Cloud infrastructures, is of paramount importance for the implementation of cost effective, yet reliable software systems to provide services to third parties. Cost effectiveness is a direct consequence of a correct estimation of resource usage, to be able to define a budget and estimate the right price to put own services on the market. Attacks that overload resources with non legitimate requests, being them explicit attacks or just malicious, non harmful resource engagements, may push the use of Cloud resources beyond estimation, causing additional costs, or unexpected energy usage, or a lower overall quality of services, so intrusion detection devices or firewalls are set to avoid undesired accesses. We propose the use of Generative Adversarial Neural Networks (GANs) to setup a method for shaping request based attacks capable of reaching resources beyond defenses. The approach is studied by using a publicly available traffic data set, to test the concept and demonstrate its potential applications.

Publication Date: 
30/03/2020