Julie Arteza
01 October 2016
01 November 2020
Despite the proclaimed benefits (i.e. scalability, reliability, cost-effectiveness) of Future Internet (FI) technologies (i.e. edge & cloud computing, IoT/CPS) for factory automation, their adoption from manufacturers remains low for various reasons, including technology issues (e.g., poor situation awareness, limited deployments, no standards-based reference implementations) and the lack of a smooth migration path from legacy systems.
FAR-EDGE is a joint effort of leading experts in manufacturing, industrial automation and FI technologies towards the smooth and wider adoption of virtualized factory automation solutions based on FI technologies. It will research a novel factory automation platform based on edge computing architectures and IoT/CPS technologies. FAR-EDGE will provide a reference implementation of emerging standards-based solutions for industrial automation (RAMI 4.0, Industrial Internet Consortium reference architecture), along with simulation services for validating automation architectures and production scheduling scenarios. FAR-EDGE will lower the barriers for manufacturers to move towards Industrie 4.0, as a means of facilitating mass-customization and reshoring. Emphasis will be paid in the study of migration options from legacy centralized architectures, to emerging FAR-EDGE based ones.
FAR-EDGE will be validated in real-life plants (VOLVO, WHIRLPOOL) in the scope of user-driven scenarios (business-cases) for mass-customization and reshoring, where tangible improvements relating to reliability, productivity increase, quality cost, reduction in adaptation effort/costs will be measured and evaluated. Also, a wide range of migration scenarios will be evaluated in the scope of a CPS manufacturing testbed.
FAR-EDGE will also establish a unique ecosystem for FI factory automation solutions, which will bring together the FoF and FI communities (e.g., EFFRA, Industrie 4.0, AIOTI, ARTEMIS JU) and will ensure sustainability of FAR-EDGE results.
Cyberwatching.eu has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 740129. The content of this website does not represent the opinion of the European Commission, and the European Commission is not responsible for any use that might be made of such content. Privacy Policy | Disclaimer / Terms and Conditions of Use