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One particular concern in Telecommunications networks is
the provisioning of quality of service despite system fail-
ures. Said failure invariably encompass many parts of the
system. For example, a simple networking misconfiguration
can result in the loss of telecommunications services for an
entire country; though most failures are much less mundane if
still critical. As system security is hardened through various
techniques, the complexity of tracing faults through the myriad
of interconnected systems becomes more complex.

In this paper, we present an integrity monitoring architecture
based around remote attestation (RA) of systems using the
Trusted Processor Module (TPM), describe the kinds of faults
that can be detected and present the basis of root cause analysis
(RCA) procedures for understanding these faults.

Telecommunications systems are moving to cloud based
infrastructures using the NFV architecture defined by the
Europian Telecommunications Standards Institute (ETSI). This
has many benefits, including the ability to effectively optimise
and scale the provisioning of telecommunications [1], [2].

With a large number of interacting elements, operators need
to keep track of the integrity of the system in terms of what
system software and hardware configurations are running and
detect changes in these. Such changes imply updates, patching,
hacking, failures and misconfigurations. This is achieved using
a combination of a trusted computing base utilising the TPM
(specifically TPM 2.0) and remote attestation over time along
with an understanding of the coupling between systems.

The TPM acts as the root of trust for a system providing
secure storage mechanism, cryptographic functions, public-
private key generation with a measurement storage mecha-
nism. The measurements of system components are made at
pre-boot, kernel load and potentially at run-time.

During boot, kernel load and run-time, different components
are hashed, and those measurements stored in platform con-
figuration registers (PCRs) in the TPM. These components
include the core root of trust, BIOS, operating system and
filesystem.

These registers are then accessed through the TPM Quote
mechanism which returns a data structure and signature cor-
responding to the selected set of measurements stored in the
PCRs. The quote is generated internally inside the TPM itself
and signed by either the chip’s attestation key or a given,
suitable signing key.

The decision whether a given machine is trusted is to check
a quote’s attested value against a known good value and ensure
that the quote itself has been signed by the TPM belonging to
the machine providing the quote.

trusted(q, s, ev) =
{

1, q.attested = ev ∧ signed(q, s)

0, otherwise
(1)

One of the problems with the TPM architecture is that it was
designed originally to protect a single machine a boot-time
only through a mechanism known as launch control policies.
This has been extended for the distributed and virtual environ-
ments by the quote mechanism described earlier. To facilitate
this, the use of an RA component is used to interrogate a
machine of its status.

The RA contains data of known machines and expected
values for those machines. It has the responsibility for connect-
ing to those machines at an appropriate time (eg: after boot),
requesting a quote, ensuring the quote is valid and signed and
then comparing it against known good values.

Additionally, the RA has a role in virtual workload place-
ment, since the physical hardware should satisfy the trust
requirements. For example, in OpenStack, when a virtual ma-
chine is being placed a set of requirements, such as available
CPU and memory are considered for the underlying machine;
RA adds a trust constraint into this.

Finally, the RA should report trust failures to other NFV
components and not just exist as a static component. This
may trigger machines to be sandboxed, removed from the
system or shutdown as appropriate. Run-time failures should
cause virtual machine migration/evacuation from the affected
hardware - this topic however is unexplored in the literature.

A trusted machine allows us more certainty regarding the
configuration of the firmware or BIOS, operating system
configuration and loading mechanism and loaded software.
This is utilised in virtualisation environment to present a
known environment for orchestration and workload placement
algorithms. Many telecommunications workloads are sensitive
in nature; for example, the lawful intercept functionality has
very strict requirements upon placement. Furthermore, the
attestation and integrity status of the machines in an NFV
infrastructure provide an additional reference point for the
overall security of system and can be cross-referenced during
updates and during attack events.

The TPM quote contains a number of fields of information
which need to be taken together, in order to decide whether
a machine is trusted at a given point in time or not. A few
select, individual rules are shown below:

expectedValue(q, ev) =
{

1, q.attested = ev

0, otherwise
(2)

signed(m, q, s) =

{
1, validSignature(q, s,m.akpub)

0, otherwise
(3)

resetinc(q, q′) =
{

1, q′.reset ≥ q.reset

0, otherwise
(4)



One of the fields included in the quote, reset count, gives
information about the number of reboots that the machine
has experienced. Similarly, the restart count field identifies the
number of suspend operations, power saving and certain TPM
start/clear commands.

Next, we describe how rule sets are constructed, applied and
notions of strictness. We can define a minimal idea of trust for
a given machine, in the form of a rule set, as:

trustedmin(m, q, s, p, V ) =expectedV alue(q, p)∧
signed(m, q, s)

(5)

This minimal definition can be tightened by extending ex-
isting rule sets with new rules. Therefore, creating a hierarchy
of strictness for the different definitions of trust.

RCA can be used to understand the why a machine may
fail its trust checks. Figure 1 shows a causal factor tree (CFT)
for the scenario in which there are inconsistencies between
the reset count reported by the TPM and what has appeared
in reality. The TPM reset account can be considered to be
accurate (unless the TPM has been replaced in which case
we will see additional failures). In this case, it is necessary
now to understand the interaction of other systems, eg: reboots
without notification to the virtual infrastructure manager, loss
of networking, machine self-test etc.

Fig. 1. TPM Reset Count Failure CFT

This kind of failure can be seen with server class hardware
which often will perform multiple reboots during self-test
procedures before the 1st stage boot loader is executed. For
example, BIOS updates generally imply multiple TPM resets
for a single ‘boot’ accompanied by a possible change in
measurements, especially those regarding the BIOS state and
configuration.

An Ishikawa diagram describing the above is shown in
figure 2. Using this form of RCA analysis allows us to
differentiate between constituent parts of the system, such as
the machine or element in question, the attestation server and
the network. Though, for constructing the mitigation database,
the previous CFT mechanism has proven to be more workable.

Additionally, we are now able to identify situations where
trust or trustworthiness can be recovered in a safe manner.
Figure 2 can help us identify those elements which perform
multiple reboots and under what conditions, which allows us
to modify or introduce additional rules; for example, in eqn. 6.

Fig. 2. Reboot Count Failure Ishikawa Diagram

afbootinc1(m, q, q′) =


1, q.pcr1 6= q′.pcr1∧

q′.reset ≥ q′reset+ 2

0, otherwise
(6)

Any new rules can be added to a rule set specific for that
given element or class of elements and placed in the strictness
hierarchy for the definition of trust.

In this paper, we have presented the use of a TPM and
attestation server in a cloud environment extended by a more
complex set of rules to decide the trustworthiness of any given
element. The rules are then linked to CFTs as part of an RCA
process to assist in both system diagnosis and forensics, and
in the overall trustworthiness decision.

Future work includes the creation of a trust graph of which
elements trust each other based on the information from trust
decisions [3]. This graph can then be utilised by external
mechanisms; for example, network routing provisioning can
provide a more trusted environment for running sensitive and
critical workload.
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