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Abstract—In order for a dataset to be legally compliant - in
some sense - with privacy laws such as the General Data Protec-
tion Regulation (GDPR) various steps must be taken to ensure the
removal of data that might compromise or reveal personal data.
This can be achieved through a process of removal of information
content or semantics; which if done incorrectly can render that
dataset in violation of such laws. Machine learning presents
a technology based around the analysis of dependencies and
correlations of a dataset. This can be used to measure information
content within the bounds of the dependencies estimators used.
Utilising this we can measure the effects of anonymisation upon
a dataset and the efficacy of said anonymisation functions. If we
additionally characterise what anonymisation means in terms of
information loss and construct classification functions we have a
framework in which the decision over whether an anonymisation
is sufficient can be made. This can then be extended to an
automation scenario where it becomes potentially possible that
texts such as as the GDPR can be rendered as said classification
functions.

Index Terms—Privacy, Machine Learning, Metrics, Legal,
Requirements, Entropy, Information, Data Quality

I. INTRODUCTION

The impact of privacy legislation upon the development
of information systems and associated processes has been
well documented. Acting upon and demonstrating compliance
with said legislation is becoming more complex with the
introduction of the EU’s GDPR [1] which effectively changes
privacy from a compliance activity [2] to a risk management
activity [3], [4].

Thus in order to develop said information systems it must
be demonstrated that the system in question is processing
information in such a way that, depending upon circumstances,
a sufficient amount of anonymisation has taken place. Herein
lies a difficulty, that given a suite of anonymisation techniques,
how does one ensure that a dataset has been sufficiently
anonymised? Further, how does one assess the effectiveness
of an anonymisation algorithm? Utilising the wrong algorithm
and not understanding the effects of an algorithm applied
to one aspect of the data on another can have potentially
catastrophic effects in terms of lack of privacy.

The aim of this paper is primarily to present a model for

such anonymisation or information content loss functions. By
combining an analysis of the effectiveness of an anonymisation
algorithm along with a notion of assessing the degree of risk in
a dataset we are effectively creating a metric or measurement
of the amount of privacy or information content in a dataset
[5], [6]. If we can measure the degree of privacy achieved
then it becomes possible to set bounds and state if a given
dataset is sufficiently anonymised. The implications of this
simple statement however would be far reaching: automating
privacy compliance and an end to lawyers, perhaps? Simply
put, map a dataset to a value and have a function that returns
whether the dataset is compliant or not for a given threshold:

D R[0,1]
m (1)

compliant?(d : D, t : R[0,1]) =

{
Compliant, m(d) ≤ t
Not Compliant, otherwise

(2)

So far however we lack both a useful measure of privacy
and a general idea of how such a privacy measurement could
be constructed. In this paper we present results based upon
utilising mutual information as a metric, analysing the effects
of anonymisation (hashing and differential privacy [7]) and
constructing classification functions to decide whether a given
dataset has been sufficiently anonymised or is effectively legal.

We present a case study based upon anonymising telecom-
munications signalling data to explore properties of anonymi-
sation and said classification functions. We then present a
notion of a privacy metric through a pair of classification
functions and a discussion of what it means to be legally
compliant given the existance of such structures. The authors
note that a true privacy metric is elusive, however we aim
to show that such a metric and structures over this can be
constructed thus admitting a discussion of what such a metric
and notions of compliance mean in such a framework.

One particular element to emphasise initially is that while
characteristic functions of the form shown above can be
constructed, the authors note that firstly that these are not



the only considerations in deciding whether a data set is
compliant or not, that the binary nature of the function above
is deliberately very abstract and that said functions can not
be properly applied in isolation. The model and analysis
being constructed here is primary to provide a framework for
further analysis of said constructions. We note with some irony
however that the final decision on whether a system or data
set complies with privacy laws is often ultimately a binary yes
or no decision on the part of the privacy lawyer/officer.

II. CASE STUDY

Telecommunications operators necessarily collect vast
amounts of customer information as mobile devices interact
with network components under stricter laws than ”over-the-
top” providers [8]. Specifically when a mobile device connects
or disconnects from a base station we are left with a record
containing user identifiers, device identifiers, timestamp and
base station identifier; the latter of which can be transformed
to a precise location. Collection of this data over time allows
triangulation of coördinates and an effective method of ac-
curately tracking users’ movements [9]. The further analysis
of this data is obvious in terms of user/group behaviour
analysis [10], [11]. We extracted data from a system which
processes telecom signalling data through various processes
to output datasets which are sufficiently anonymised to satisfy
the requirements of telecommunications privacy laws. The data
flow of this is shown in figure 1.

The process of collecting and supplying the finalised data
involves 5 datasets which may include personal data which
would be ‘illegal’ to release: the initial data storage, the file
storage, raw data, atomic data and report storage as name in the
data flow diagram. We must prove that the data being released
after the aggregation process, the data collected in the store
called ‘report storage’ has been sufficiently anonymised with
respect to any preceding dataset.

Three conditions therefore must hold over the process (or
subprocesses as the case maybe): the amount of information
in the output data must be less than the amount of information
in the input data, the amount of information in the output data
must be less than some legally acceptable threshold, and, the
output data must contain enough information to be usable for
a given purpose. Let Di and Do be any pair of datasets where
i denotes the input and o the output. The function m is a
measure of the information content and t threshold value for
some property:

1) m(Di) > m(Do)
2) m(Do) ≤ tlegal
3) m(Do) ≥ tusable
The input signalling dataset contains three fields, an identi-

fier, a timestamp and a location. The base dataset is extended
by interpolation of the locations and a finer grained timestamp

resulting in a processed dataset. This latter dataset is the
one to be released through an anonymisation algorithm. We
therefore are required to show that the released dataset has
been sufficiently anonymised. To the processed dataset in the
experiments we apply the following anonymisation functions:

• hashing of the identifier
• differential privacy of the location
• differential privacy of the timestamp
• differential privacy of the location and timestamp

The measurement of the information content is made by
calculating the mutual information of the dataset: a measure
of the internal consistency. We demonstrate that increasing
noise lowers the mutual information; also we demonstrate
that hashing of the identifier effectively has no effect on the
information content - though we do not specifically rule this
out as being a method of anonymisation (see discussions).

III. A THEORY OF ANONYMISATION

Anonymisation can be formulated as the application of a
function to a data set which reduces its information content
[12]. For example, removing possibility to recovering or
relinking that data so that a unique individual (or group of
individuals) can be re-identified. In order to achieve this,
anonymisation function add noise or decrease the information
content of a dataset. The goal is to find a dataset that is
sufficiently anonymous enough to be legally compliant and
containing enough information to be useful for whatever
purposes it will be put to.

A. Properties of an Anonymising Function

We can list a set of functions that anonymise a dataset. Each
function in A below takes a dataset and set of parameters
π1 . . . πn as input and returns a dataset.

A = {(ε, δ)−differentialPrivacy, κ−anon, hash(. . .), . . .}
(3)

We may then take a particular function α ∈ A with suitable
values for its parameters, for example, in one instance α might
be a differential privacy function applied to the location fields
in some input dataset Di : diffP(Di, field = LOCATION, ε =
0.1, δ = 0.9) and expect a suitably processed set of location
fields in the output set Do:

Di Do
α(π1...πn)

(4)

We expect an anonymising function to reduce the infor-
mation content present in the input dataset. Given a suitable
measure m of information content the following diagram
commutes under an anonymising function [13]:



Fig. 1. Case Study Data Flow Diagram

Di Do
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α(π1...πn)
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>
(5)

Subsequent applications of anonymising functions can com-
posed such that the information reduction is monotonic over
the subsequent applications, ie:

Di D1 D2 . . . Do

Mi M1 M2 . . . Mo

α1

m

α2

m

αn

m

αn

m

> > > >

B. Desirable Properties

We introduced a naı̈ve characteristic function in (2) earlier
and here we extend this notion to other desirable properties
of datasets. We restrict ourselves to two such desirable and
prominent properties in this discussion:

• whether the dataset is legal
• whether the dataset is useful

Datasets are often presented in terms of whether the dataset
is compliant and sufficiently anonymised such that it can be
used or released. Data scientists would prefer the dataset to
be as correct and detailed as possible to increase the accuracy
of processing and statistical inference (amongst others). Using
the subobject classifier construct defines the properties of such
functions. In (6) we out legal datasets L from D through a
classifying function χL.

L 1

D {0, 1}χL

(6)

Similarly other classifier functions can be defined for other
properties such as statistical usefulness [14]. These are com-
posable, eg: χL ◦ χU extracts the legal and useful datasets
denoted C in (7).

D

L U

C

χL

χU

χU
χL

(7)

C. Successful Anonymisation

The application of an anonymisation function, or sequence
of anonymisation functions as the case may be, occurs when a
the output dataset exists in the set of legal and usable datasets;
the diagram shown in (8) holds.

Di Do

C

α

χL◦χU (8)

It is of course another matter whether the structure C is
empty, or if not, which particular dataset is of most value
with respect to the legal and usable aspects.

IV. ANALYSING ANONYMISATION FUNCTIONS

While many potential information entropy metrics exist,
one of the most prevalent at this point in time is Mutual
Information [15], which can be used in a data mining/ ma-
chine learning context, e.g., to infer and quantify possible
relationships between variables (or fields of data structures)
for further analysis. In effect, Mutual Information measures the
higher order dependencies (higher order meaning here more
than simple correlation, including possibly complex non-linear
relationships) between variables. Typically, mutual information
can be computed between any number of variables, although in
practice, measuring it efficiently and correctly between more
than two variables is extremely challenging [15], [16], [17].

In the context of this paper, we look specifically at the
mutual information values between pairs of variables, and
collate these values in a matrix, following the scheme in Eq. 9.



X =

  C1

  C2

  C3

  −→ MI(X) (9)

where MI(X) is defined:

MI(X) =

 1 MI(C1,C2) MI(C1,C3)

MI(C2,C1) 1 MI(C2,C3)

MI(C3,C1) MI(C3,C2) 1

 .
(10)

The matrix MI(X) contains in effect the pairwise mutual in-
formation values between all combinations (pairs) of variables
in the original data set (here, three variables/ data fields).

One rationale for using mutual information when measuring
the impact of privacy techniques on the usability of data, is
that tampering with variables that have dependencies between
them, will lower the mutual information between them [18].
This is rather straightforward in the case of added random
noise: Suppose that two random variables X and Y are being
used for this example, and that X and Y are not purely
independent, then MI(X,Y ) 6= 0. In the case of privacy
techniques that behave like additive random noise, we can
very simply see that adding such noise to one (or to both)
variable, will decrease the mutual information between them.
Given a random noise variable Z, independent from X and
Y , we have then

I(X + Z, Y )− I(X,Y ) = H(X + Z)−H(X + Z|Y )
− H(X) +H(X|Y )
≤ H(X) +H(Z)−H(X|Y )
− H(Z|Y )−H(X) +H(X|Y )
≤ H(Z)−H(Z|Y ) = 0

(11)
which means that I(X + Z, Y ) ≤ I(X,Y ) as required by

Eq.5.
Thus, the mutual information is a possible means of quan-

tifying the loss of information generated by such privacy
techniques as random additive noise (as in the case of some
Differential Privacy techniques). For more complicated privacy
techniques, the proofs would obviously be more complex to
derive, and potentially impossible to express properly ana-
lytically (such cases as a change of data field (by hashing,
encrypting. . . ), non-independent, non-additive noise. . . ).

A. Analysing Hashing

Hashing is a very common technique for hiding data with
cryptographic hashes being the primary mechanism. One of the
problems with hashing is that they are mistaken as mechanisms
for reducing information content over the dataset whereas their
actual function is to hide the contents of the data and not
change it to another form. Ostensibly hashing functions are

one-way, but in type theoretic terms effectively change, for
example, identifiers into identifiers, albeit of a different kind.

If hashing is to be used then case must be taken to change
the salting of the hash over a suitable period of time to reduce
the possibility of tracking and/or re-identifying structures.
Even after this, advanced statistical techniques can extract
patterns.

In figure 2 we show the change in mutual information
between two datasets where one has the original data and
the other where the identifier field has been cryptographically
hashed.

Fig. 2. Example of Lack of Mutual Information Change Under Hashing

The point here is to state clearly that hashing does not imply
information loss, and according to our specific definition we
do not consider hashing to be an anonymisation function in
this context as defined in (5).

B. Analysing Differential Privacy

We take differential privacy as the canonical example of an
anonymisation function and one that (should) adheres to the
constraints in (5). Differential privacy works by adding noise
to a given structure, for example, locations or timestamps.
Note: we do not differentiate between different kinds of
differential privacy functions but base this on the original work
in [7] and use that as a basis for this family of anonymisation
functions.

Given our signalling dataset we apply differential privacy
with suitable values of ε and δ to add enough noise such



that the chosen structures and thus the dataset as a whole is
rendered more private. We wish then to investigate and assist
in the following:

1) the selection of structures within a dataset on which to
apply differential privacy

2) the selection of suitable/acceptable ε and δ values
3) the effects upon the dataset as a whole

The first point is relatively simple in that most datasets
can be characterised in terms of containing three structures:
identities, locations and timestamps. The latter two are suitable
for the application of differential privacy. However we are left
with the following choices along with the selection as noted
in the second earlier point of suitable values of ε and δ:

1) diffP applied to location
2) diffP applied to timestamp
3) diffP applied to location and timestamp

We can construct a result space that contains the mutual
information matrices for a range of and therefore indexed by
(ε, δ) values for a given anonymisation function.

Di Do

∐
π∈(ε∈[0,10],δ∈[0,100])Mπ

∐
π∈(ε∈[0,10],δ∈[0,100])Mπ

α(ε∈[0,∞),δ∈[0,100)

m m

>

(12)

For our anonymisation property to hold, some degree of
anonymisation must take place. If the value of (ε, δ) is set such
that no noise is added and/or no elements in Di are affected
then Di is isomorphic to Do and the mutual information
measurements of both are effectively the same.

A fragment of the result space is:

. . . ,
(ε = 0.1, δ = 90),

ID LOC TS
ID 1
LOC 0.8 1
TS 0.1 0.3 1

 , . . .


(13)

From which we can extract or project individual, normalised
correlation values from each matrix for each (ε, δ) value and
plot this to obtain graph of the changing mutual information
values for any pair of structures, eg: location against timestamp
as shown in figures 3 and 4. The former of which shows the
decrease in mutual information as (ε, 0)-differential privacy
being applied to location, timestamp and then both in equal
measure.

In the second case in figure 4 we extend the plot to (ε, δ)-
differential privacy being applied only to location.

(a)

(b)

Fig. 3. Example Plot of MI for DiffP(ε,0) ∈ [0, 20] Applied to the
Location, Timestamp and Location-Timestamp Structures

Fig. 4. Example Plot of MI for DiffP(ε,δ)∈[0,20],[0,100] Applied to the
Location Structure

From this graph we can see that if no noise is added then
the mutual information remains at its maximum. As noise is
added for (ε, 0) differential privacy, ie: all rows in the dataset
are affected then the mutual information decreases slowly but
always remains low even with low levels of noise (high values
for ε).

The implication of δ is interesting in that when only a



small set of row, say 10% (δ = 90) are affected then mutual
information between location and timestamp does not reduce
until very high levels of noise are added. Such a result has
implications here that much of the data is actually correct
despite noise is being added.

This however is still just one projection of the results and a
fuller knowledge of the affects of applying an anonymisation
function to one structure in the dataset can only be gained if
we project into three (in this case) separate visualisations.

The set of protections is calculated by taking the set of pair-
wise correlations of the lower matrix triangle structures in the
source dataset. In our case this gives three projections: identity
by location, identity by timestamp and location by timestamp
(as shown in figure 4). This gives us another structure V which
is the structure of projections by pair-wise correlations:

∐
Mπ

∐
s∈structPairs Vs (14)

Given the result set and projections we can now properly
construct and visualise the characteristic functions χL and
χU . These can be constructed by taking the limit over each
characteristic function applied to each element MMpi in the
above (14). Another way of visualising this is that χL (or
any other classifier) slices through each manifold (as in 4)
generated for each structure. For example in figure 5 we
show a possible slice separating this particular space into
‘legally’ and ‘non-legally’ compliant based on the decrease
in information content.

Fig. 5. Demonstration of Classifying

The classifying function for χU , ie: usability, is similarly
constructed and the composition of these functions corre-
sponds to the intersection of the slices over the manifolds.
If it is the case that the intersection does not exist then either
we are anonymising too much or are too strict on the required
usability characteristics, possibly.

C. Causal vs Non-Causal Fields

We have developed a hypothesis that states that if anonymi-
sation is enacted upon causal data, ie: the data that controls
the ordering of events within a dataset, eg: a timestamp field,
then anonymisation has a potentially greater effect upon the
information loss. In figure 6 we show three examples where
differential privacy of the same type was applied with the
same (ε, δ) values to location, timestamp and both location
and timestamp fields.

Fig. 6. Information Loss Applied to Temporal and Non-Temporal Fields

The uppermost manifold corresponds to differential privacy
being applied to only the location field, the middle to the
temporal field and the lower to both. In all cases the measure
property of mutual information is preserved as expected. The
decrease in mutual information when applied to the timestamp
is attributed to the inability of the mutual information estima-
tors to find correlations between the location and the identifier,
that is the relationship of the tracks to a person as the ordering
of the fields is disrupted.

More work is required here to set the bounds on the
differential privacy with respect to the granularity of the events
but all early indications show that as soon as event ordering is
disrupted then information loss is greater when causal fields
are anonymised.

Care should be noted that applying an anonymisation func-
tion to a single field may not render the dataset immune to
deanonymisation!

D. Properties of Anonymisation Functions

As already noted and shown visually in figure 6 and defined
in Eq.(11) applications of anonymisation functions observe
the rules of metrics or distance spaces. This means that on
a manifold such as that in figure 7 we could effectively
plot the optimal trajectories and thus optimise over a set of



anonymisation functions in order to reach a particular point
representing a certain value of mutual information and thus
information loss.

In figure 7 we show four anonymisation functions’ trajec-
tories in terms of the starting and ending values of the mutual
information metric on that particular manifold. We show seven
anonymisation functions a0 to a6 (variations on differential
privacy most likely with one exception).

Fig. 7. Plotting Anonymisation Function Trajectories

The first thing to note is that some anonymisation functions
are compositions, or behave similarly to compositions of
others, eg: a5 ≈ a2 ◦ a1. Some anonymisation functions are
behaviourally equivalent such as a3 ≈ a4, while some do
not fit our definition of anonymisation, ie: a0 which may be
some hashing function in this context. If we have choices
of anonymisation functions available and knowledge of their
properties such as computational complexity or other efficien-
cies then it becomes possible to optimise their application.

From a legal perspective knowing the existence of in-
termediate datasets that may fall outside of any compliant
area defined by χL provides us information about which
compositions of anonymisation functions should be combined
into indivisible functions. For example, we might choose to
compost a1 and a2 as a5 to avoid the accidental release of
an intermediate data set. Consider how this compares with the
intermediate datasets shown earlier in figure 1.

Furthermore we can also identify anonymisation functions
which do not work or are not being applied correctly. For
example, we stated that a0 might be a hashing function which
does not fit our particular definition of anonymisation here.
This is easily seen as a function which effectively behaves as
an identity function, ie a0 ≈ IdD.

V. DISCUSSION

We have now demonstrated a mechanism for measuring the
mutual information content of a given dataset and a structure
for deciding whether that dataset is legally compliant and/or
useful. In terms of privacy requirements, automation and the

mathematical formalisation of a legal text such as the GDPR
is profound. We discuss the following within the context of
this work here.

We assert that a mathematical formulation of privacy in
terms of information theory, type theory and model theory
is possible, albeit ‘hard’ [19]. Contributing to this of course
is the fact that many techniques, such as the measurement
techniques presented here, a general theory of privacy and a
detailed understanding of some of the finer semantic effects,
eg: causal vs non-causal data, does not exist in a full nor
coherent form at this time [20].

What can be shown is that a structure can be created that
allows aspects of privacy to be properly formulated. The act
of stating that an anonymisation function is one that reduces
information content now gives us a starting point for a proper
classification of anonymisation functions and a possibility of
extracting aspects of the assumed context in which they work.
One of the major problems seem with anonymisation function
is their use is often flawed in that their application is made
just because they are denoted anonymisation functions [21],
[22]. The correct usage as we have presented depends upon
the internal structures of a dataset and how these are related.
Incorrect application to a structure or part of a structure
might still render a dataset unanonymised [23]. The AOL
Search Data Leak from August 2006 is a classic example of
not understanding how anonymisation works and its incorrect
application.

Further to this the amount of data required for an accurate
estimation and later further learning is extensive. For the
dataset we are using extracted from the signalling data, which
itself can reach potentially millions of records per day, smaller
extracts were taken. However, if the extract is too small then
the error rates from the machine learning estimation functions
will be too great. This is somewhat obvious from the results
when visualised as in figure 8 where the variation in accuracy
of the estimators either becomes too variable or degenerate.

Fig. 8. Estimator Degeneracy Visualisation



Machine learning as a tool for increased automation [24] is
well discussed along with the implications for its use in a legal
sphere, eg: contract analysis [25], [26]. The application of this
to the decision whether a given dataset is anonymised enough
depends upon successful construction of the above mentioned
structures.

This then leads us to how the decision of whether a dataset
has been anonymised and how the decision or classification
function generated. We have defined the existence and prop-
erties of such as function only in the classifier function χL.
Anonymisation must monotonically decrease the information
content of a dataset, given this we can simply render the
classification function χL as a composition (the categorical
product - or limit even) of all slices through the manifolds
created by the variance in parameters of that anonymisation
function over the pairs of structures that exist in the dataset
being anonymised.

Meaning, in the case study example here we have three
structures: identifier, locations and timestamps. This gives us
3 structures as can be seen in the matrix in Eq. (13)1, ie:
{ID × LOC, ID × TS, TS × LOC}. For each of these we
create a classifier function χL and thus compliance with a
given legal characteristic is defined that all three possible
correlations must have mutual information below a certain
threshold as defined by the composition of those functions.

We can then characterise a legal text, such as the GDPR as:

GDPR −→
∏

s∈structPairs(D)

χ` (15)

The challenge is therefore not the fact that such a mapping
can or can not be made, but rather actually picking out the
parameters that decide whether the mutual information of a
given structural pair is below a certain limit. If this is achieved,
and by trial and error it is possible in simple cases, then we can
reduce the choice of anonymisation algorithm and parameters
to those algorithms to an optimisation problem. A simple
choice here might be to pick the datasets that correspond to
the average mutual information values over the characteristic
functions χL, χU etc that are used to pick compliant and useful
datasets.
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13 is because machine learning estimators become increasingly difficult to
utilise when there 3 or more parameters to the correlation

VI. CONCLUSIONS FUTURE WORK

The example and structure already show demonstrate that
a metric for privacy, a structure for anonymisation and clas-
sifier functions generated of particular privacy aspects can be
constructed. Having these presents the first step in the process
of metricising and automating the decision of whether a given
dataset is sufficiently anonymous. Deciding whether a dataset
is useful is relatively trivial; deciding whether it is legal is
exceptionally difficult in that we still do not have either a good
notion of context of a dataset, ie: the situations in which it is to
be used and how re-identification/deanonymisation might take
place, and how one might even construct a function such as
χL from a text such as the GDPR. Here much work remains
regarding the characterisation of what ‘personal data’ is and a
proper ontologisation of such a concept along with the contexts
in which that term is being used [27].

Our experiments have concentrated on utilising mutual
information within a single dataset and in the direction of the
anonymisation function. There are still a number of restrictions
that need to be addressed such as properly characterising the
nature of the ordering between result spaces: currently we can
only do this on a per value basis. Work has been made on the
use of eigenvectors and the magnitude of matrices in areas
such as ecology and biology.

Another important restriction we currently face is that the
structures of the input and output datasets are the same.
This means that suppression function can not be adequately
analysed at this time. This then has implications towards
measuring the amount similarity between datasets which is
important for constructing a measure of the degree of re-
identification possible.

The structure of the boundary values above is relatively
simple, in that they are normalised typically to R[0,1] and
therefore between individual values comparison is simple.
However simply denoting the comparison of two matrices
of the forms above as a comparison of values within those
matrices is naı̈ve and does not fully capture the true nature
of the decreasing nature of the mutual information. We are
investigating the use of the magnitude of mutual information
correlation matrices, their eigenvectors and more advanced
probabilistic metrics [28], [29].

Further work continues on the overall semantics with par-
ticular emphasis being made on the nature of anonymisation
function as visualised in figure 7. There is a relationship
between how these trajectories generalise over many manifolds
and how characterisation functions act. We are currently ex-
ploring ideas from homotopy type theory [30] in order to better
understand the relationship between, say, legal compliance and
the behaviour of such functions.

In summary, we have shown that metricisation is possible



with at least the metrics we have shown here and that encoding
notions of usability and legality over the result metric spaces
is feasible if complex. This complexity may prove to be the
human’s advantage when it comes to properly understanding
privacy and compliance of complex information sets under
automation.
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tropy and Mutual Information Based on Generalized Nearest-Neighbor
Graphs,” ArXiv e-prints, Mar. 2010.

[18] Y. Miche, I. Oliver, S. Holtmanns, A. Kalliola, A. Akusok, A. Lendasse,
and K.-M. Björk, “Data anonymization as a vector quantization problem:
Control over privacy for health data,” in International Conference on
Availability, Reliability, and Security. Springer, 2016, pp. 193–203.

[19] B. Schneier, “Architecture of privacy,” IEEE Security & Privacy, vol. 7,
no. 1, p. 88, 2009.

[20] J. Brickell and V. Shmatikov, “The cost of privacy: destruction of data-
mining utility in anonymized data publishing,” in Proceedings of the
14th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2008, pp. 70–78.

[21] Privacy Enhancing Technologies (PETs), Memo/07/159 ed., European
Commission, Brussels, May 2007.

[22] Anonymisation: Managing Data Protection Risk Code of Practice, The
Information Commissioner’s Office (UK), November 2012.

[23] H. Zang and J. Bolot, “Anonymization of location data does not work:
A large-scale measurement study,” in Proceedings of the 17th annual
international conference on Mobile computing and networking. ACM,
2011, pp. 145–156.

[24] J. M. Wing, “Computational thinking,” Communications of the ACM,
vol. 49, no. 3, pp. 33–35, 2006.

[25] G. Lame, “Using nlp techniques to identify legal ontology components:
concepts and relations,” in Law and the Semantic Web. Springer, 2005,
pp. 169–184.

[26] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[27] I. Oliver, Privacy Engineering: A Data Flow and Ontological Approach.
CreateSpace Independent Publishing, July 2014, 978-1497569713.

[28] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann.
Math. Statist., vol. 22, no. 1, pp. 79–86, 03 1951. [Online]. Available:
http://dx.doi.org/10.1214/aoms/1177729694
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