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Executive Summary 

One of the main objectives of the ENCASE project is to develop a browser add-on and its 

corresponding machine learning algorithms for the detection of malicious and problematic behavior 

such as cyberbullying, hate speech, aggressive behavior, distressed behavior, and sexual grooming. 

This document describes the efforts and algorithms developed to identify and quantify the various 

types of online abuse. It also explains the research conducted and the methodologies studied to 

detect hateful content, raid, abuse, sexual grooming and bullying. 

This deliverable also provides a brief description of the completed projects carried out towards 

automatically detecting malicious behavior in the context of tasks T4.1 - “User profiling to detect and 

prevent malicious and criminal activities” and T4.2 - “Sentiment and affective analysis on individual 

and collective basis”, which were listed as “ongoing” and were included in deliverable D4.1 – 

“Development of automated techniques to detect early indications of malicious behavior of social 

network users”. Importantly, the work and efforts that took place during Task 4.3 - “OSN malicious 

users time-dependent detection” is thoroughly presented herein. 

Task 4.3 aims at modeling of time-dependent interactions and activities of social network users, and 

the application of graph mining and text processing methodologies to detect latent patterns of 

activity by users/entities and their interactions. Advanced data mining and analytics techniques were 

developed in order to leverage the OSN users’ concurrent activities that indicate behavioral 

variations and spikes with emphasis on advancing the state of the art on anomaly detection in OSN.   
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1. Introduction 

Unfortunately, bullying is a big part of the life of every youngster in our days. Recent study 
announced that over 3.2 million students are victims of bullying each year and approximately 
160,000 teens skip school every day because of bullying. Notably, 17% of American students report 
being bullied 2 to 3 times a month or more within a school semester1. 

The worst part of bullying is when the event takes even bigger extent and reaches the house of the 
youngsters. Today, bullies use the internet and Online Social Networks (OSN) to spread their hatred 
and loathing. Cyberbullying, cyber aggression, hate speech, racism and sexual grooming and the lack 
of cyber safety are serious and widespread issues affecting increasingly more Internet users.  

This document attempts to address the above mentioned problems. Researchers developed 
automated techniques with the aim to detect early indications of malicious behavior, how malicious 
behavior affects the feelings of young users, and how to better protect minors from online 
radicalization. Specifically: 

a) In Section 2, we go through the research done for Behavioral Pattern Identification and 
how we can identify different predator classes based on their behavior; 

b) In Section 3, we try to identify available datasets including chat conversations between 
what can be considered benign users, in a friendly context; 

c) In Section 4, we focus on identifying, extracting and cleansing of group conversations 
with the purpose of extracting bidirectional friendly conversation datasets between two 
group participants; 

d) In Section 5, we explain how we tried discovering multiple patterns indicative of 
predatory (sexual predators or cyberbullying) behavior over time by analyzing OSN user 
interactions; 

e) In Section 6, we put all the above in practice and we aim to detect cyberbullying 
behavior against minors. Our approach is through the emotional state of the minor. If a 
minor feels angry/sad/frustrated during a chat conversation, then this might be an early 
indication cyberbulllying; 

f) In Section 7, we present a large-scale, quantitative study of online antisemitism; 

g) Last, in Section 8, we provide an assessment of the popularity and diversity of memes 
and how they are extremely common in fringe Web communities. 

  

                                                           
1
 https://www.dosomething.org/us/facts/11-facts-about-bullying 
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2. Behavioral Pattern Identification 

2.1.  Project Description and Motivation 

The purpose of this work was the development of Python scripts and equivalent APIs for the 

visualization and analysis of the Perverted Justice dataset. Specifically, the temporal analysis of the 

Perverted Justice dataset for identification of different predator classes based on their behavior was 

conducted, while the visualization of the statistics which was emerged from the Perverted Justice 

overall analysis for all cases and all sessions of the dataset was carried out. 

2.2. Perverted Justice Dataset Correction and Temporal Analysis 

During the processing of the Perverted Justice dataset, some inconsistencies in it were identified, 

which led to its correction and enrichment. The main issues were the following:  

i. In some cases the username of the predator and/or victim would change within the same 

case. This lead to wrong value in the “PV” field (i.e., this field describes a participant as 

predator (P) or victim (V)).  

ii. Wrong values for the “Date” existed. In some cases, the time changed, but the date 

remained unchanged (e.g., a message sent at 23:59 and another one sent at 00:01 had the 

same date).  

The first problem was solved following the next steps: i) the first message of the predator and the 

victim are identified, ii) to identify the cases with possible errors the number of messages from 

predators and victims were calculated. A Python script was developed for this purpose. The ones 

with big difference between the two values were examined for possible errors, iii) the different 

usernames for the predator and victim were collected manually, iv) all different usernames 

identified for predators and victims were replaced by the ones found in step 1, and v) the values for 

“PV” were updated according to the username. 

The second problem was solved following the next steps: i) the values for the “Date” fields of all 

cases were checked, ii) the date was transformed into a number of seconds, iii) the difference 

between this value for all pairs of chatlogs was calculated, iv) If this value was negative, this means 

that the date has not changed, and v) In this case, the value for the day and possibly the month was 

updated. 

Once the correction of the dataset was completed, the next step was the enhancement of the 

“Session” field. A session can be defined as a series of messages exchanged within x seconds 

between each other. In our case, the values that were selected for x were 30 sec, 60 sec, 5 min and 

30 min. Given that the aim of this task is the time-related analysis of the dataset, the addition of the 

sessions was crucial for the analysis undertaken in the following steps. Code-wise, a Python script 

was developed that was reading each case from the database and each chatlog of the case and was 

adding the session numbering based on the time that passed since the previous message from the 

current one. The equivalent value was added in the Session field which is of type Array. An example 

session counting can be seen in Table 1. 
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Table 1. Example session counting 

Message time 30 sec 60 sec 5 min 30 min 

10:01:05 1 1 1 1 

10:01:15 1 1 1 1 

10:01:47 2 1 1 1 

10:04:34 3 2 1 1 

10:31:01 4 3 2 1 

2.3. APIs for Data Analysis  

The APIs (Applications Programming Interfaces) that were developed for the visualization and the 

analysis of the data are presented in this section. Note that the example charts in this section are 

based on the Salsakewl case and a 5min session.  

MessageCountingCall 
MessageCoutingCall gets as input the name of a case and returns two two-dimensional arrays. The 

first contains the number of messages sent by the predator at each time and minute and the second 

is the equivalent for the victim (i.e., the arrays are of size 24X60). This API is useful to capture the 

number of messages that are being exchanged throughout the 24 hours of a day. This API can be 

used to calculate the total number of messages per hour (see Figure 1), as well as the number of 

messages for pair of hour and minute (see Figure 2). In the first case, we can have an indication of 

how active each participant is during the course of a day. For example, in the Salsakewl case, a lot of 

activity takes place in late evening and early morning times and very little during day time. In the 

second case, we can have an indication of how active each participant is during the course of a day 

and for each minute of each hour. In the Salsakewl case, the majority of the messages are exchanged 

in late evening and early morning hours and the messages are relatively evenly distributed within 

each of these hours. 

 
Figure 1. Messages per hour 
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Figure 2. Messages per hour and minute 

MessageCountingHourlyCall 
MessageCountingHourlyCall gets as input the name of a case and returns a two-dimensional array 

containing the sum of messages for each second of an hour and each minute for all hours (i.e., the 

participants to be bots. In the Salsakewl case, no such pattern can be observed (see Figure 3).  

 

Figure 3. Messages per second and minute of hour 

TotalMessagesPerSessionCall 
TotalMessagesPerSessionCall takes as input the name of a case and the option for session window 

and returns the number of messages per session for the predators and the victims. These data give 

an indication of how the number of messages exchanged varies over time, as well as an indication of 

the density of the messages (see Figure 4). Moreover, they can show how the number of messages 

varies with the duration of the session. For example, in the Salsakewl case, the number of messages 

increases with the duration of the session. 
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Figure 4. Messages per session 

TotalMessagesPerDayCall 
TotalMessagesPerDayCall gets as input the case name and returns an array with the number of 

messages for every day and for the duration of the case. These data can give an indication of the 

activity throughout the case period. In the Salsakewl case, an uneven distribution of messages can 

be observed (see Figure 5).  

 
Figure 5. Messages per day 

SessionInitiateCall 
SessionInitiateCall takes as input the name of a case and the option for session window and returns 

two arrays with length equal to the number of sessions to show which sessions are initiated by 

predators or victims respectively. These data can give an indication of how willing each participant is 

to initiate a conversation with the predator, as well as an indication of the duration of the 

conversation initiated by predators and victims (see Figure 6). For example, in the Salsakewl case, 

when the session duration increases, the percentage of sessions initiated by the predator increases. 

This means, that the predator initiates conversations with longer duration and with higher density of 

message exchanging. 
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Figure 6. Session initiated by predator/victim 

PredatorVictimReciprocalMessagesPerSessionCall 
PredatorVictimReciprocalMessagesPerSessionCall calculates the number of messages for predator 

and victim and the sessions that are reciprocal (i.e., the sessions where only the predator is posting 

messages and the victim sends no reply). It takes as input the name of a case and the option for the 

session window and returns three arrays with the equivalent values. Regarding the data on 

reciprocal sessions, they can give an indication of how responsive the victim is to the predator’s 

messages and how this varies with the duration of the session. In the Salsakewl case, the percentage 

has small variations with the duration of the session. However, no trend can be identified, and no 

conclusion can be drawn (see Figure 7). 

 

Figure 7. Sessions reciprocal 

TimeToReplyCall 
TimeToReplyCall takes as input the name of a case and the option for session and returns the 

average time that the predator takes to reply to the victim and the victim to the predator within 

each session. These data give an indication of how eager the predator and the victim are to reply to 

the messages. Note that in some cases/chatlogs the seconds in the timestamp were not available. 
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For this reason, some zero values exist. Also note that the duration of the session sets the upper 

limit in the average time to reply. In the Salsakewl case, the predator has a shorter time to reply 

compared to the victim (see Figure 8).  

 

Figure 8. Response time per session 

CDFCalculationCall 
CDFCalculationCall calculates the CDF for each case. An array with number of messages and 

percentage of sessions having at most this number of messages. In the CDF graph, the x-axis 

represents the number of messages and the y-axis the percentage of cases that have at most the 

number of messages in the equivalent x-axis value.  It is expected the graph to reach the 100% value 

sooner as the duration of a session increases. This is the case in the Salsakewl case (see Figure 9). 

 

Figure 9. CDF for sessions and messages 

MessagesPerTimeWindowCall 
MessagesPerTimeWindowCall takes as input the name of a case and the start and end time and 

returns the number of messages for predators and victims for the given time window. 
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SessionsPerDayWindowCall 
SessionsPerDayWindowCall takes as input the name of a case and two dates and returns the number 

of sessions between these two dates. 

2.4. Investigation of Reciprocal and Non-Reciprocal Sessions Between Users 

The temporal analysis on the Perverted Justice dataset was extended with the purpose of identifying 

of different predator classes based on their behavior focusing on the data analysis for all cases 

investigating reciprocal and non-reciprocal sessions in order to provide a visual overview of the 

whole dataset, using statistical diagrams (i.e., Scatter Plots, CDF, Box Plots). The developed Python 

scripts for the analysis and the visualization of the extracted statistics for the Perverted Justice 

dataset are presented below.  

Note that the example diagrams in this section concern statistics for all cases. The sessions are 

identified based on a time window between the two consecutive messages from the two 

participants. We define as a reciprocal session one where both participating parties have posted 

messages. All other sessions where only one of the parties has sent one or more messages are 

considers non-reciprocal.  

FindReciprocalStatsPerCase 
FindReciprocalStatsPerCase gets as input: a list with all chats for a given case, the name of the case, 

the Id of the session type (i.e., session Id = 1 for 30 sec sessions), a list of dictionaries (SessionsStats) 

for storing the statistics for each session of the given case and returns: a dictionary named 

case_stats with the statistics for the given case and session type. More specific, the case_stats 

dictionary includes the following fields: case (name of the case), sessionType, sessionsCount, 

SessionsReciprocal, SessionsNonReciprocal, SessionsReciprocalPercentage, 

SessionsNonReciprocalPercentage, CaseChats, PredMsgsCount, VictMsgsCount. 

The SessionsStats list variable is passed by reference and is used to capture detailed data for each 

session of the given case. To extract the statistics for each case and each session of the case, the 

method is called in a loop for each document/case of the database in the main program.  The 

returned SessionsStats list, provides the needed data for the visualization of the statistics related to 

sessions (reciprocal/non-reciprocal) and the number of messages. The SessionsStats data was used 

to extract the diagrams related to sessions’ statistics. More specific, the case_stats list includes the 

following fields: sessIndex (gives a unique identifier to each session, Case name, sessId, sessType, 

sessIsReciprocal (true or false), sessMsgsCount (counts messages per session, caseMsgsCount 

(counts total _chats for the given case). 

ScatterNonReciprocalAllCases  
ScatterNonReciprocalAllCases gets as input the list containing the data for each case and plots a 

scatter plot. In detail, the scatter diagram visualizes the percentage of all non-reciprocal sessions for 

all cases (see Figure 10). We can observe that non-reciprocal sessions are presented in almost all 

cases with most of the cases ranging between 10-40% of all the sessions. However, the analysis of a 

session type with a larger time window, i.e. session type 3, shows that the percentage of non-

reciprocal sessions widens dispersed ranging from 10%-80% (see Figure 11). 
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Figure 10. Percentage of Non-Reciprocal Sessions per Case | Session Type 1 

 
Figure 11. Percentage of Non-Reciprocal Sessions per Case | Session Type 3 

CDFNonReciprocalAllCases  
CDFNonReciprocalAllCases calculates the CDF for all cases. It gets as input the list containing the 

data for each case and plots a CDF [cumulative distribution function] diagram for the non-reciprocal 

sessions. In the CDF diagram, the x-axis represents the cumulative percentage of cases and the y-axis 

the cumulative percentage of Non-Reciprocal sessions corresponding to a specific value of 

percentage of the x-axis.  The CDF diagram in Figure 13 visualizes the cumulative percentage of non-

reciprocal sessions for all cases of the Perverted Justice dataset. We can observe that 90% of all 

cases correspond to about 50% of the non-reciprocal sessions for session type 1 (Figure 12). Similar 

is the Figure 14 that results from the analysis of sessions with a larger time window (Figure 13).  
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Figure 12. CDF of Non-Reciprocal Sessions for All Cases | Session Type: 1 

 

Figure 13. CDF of Non-Reciprocal Sessions for All Cases | Session Type: 3 

Scatter Plots for reciprocal and non-reciprocal sessions for all cases 
− ScatterMsgsNonReciprocalAllSessions gets as input a list containing data for each session of 

each case (data for sessions were stored in the SessionsStats list of dictionaries structure) 

and plots a scatter plot. In detail, the scatter diagram visualizes the number of messages for 

each non-reciprocal session for all cases (Figure 14(a)). We can observe that a low number of 

exchanging messages characterizes almost all non-reciprocal sessions, limited to less than 10 

messages per session. 

 

− ScatterMsgsReciprocalAllSessions gets as input a list containing data for each session of 

each case (data for sessions were stored in the SessionsStats list of dictionaries structure) 

and plots a scatter plot. In detail, the scatter diagram visualizes the number of messages for 

each reciprocal session for all cases (Figure 14 (b)). We can observe that the exchanging 

messages for most of the reciprocal sessions are presented in less than 100 messages per 

session and just few of them exceed the 100 messages. 
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− ScatterMsgsAllSessions gets as input a list containing data for each session of each case 

[data for sessions were stored in the SessionsStats list of dictionaries structure] and plots a 

scatter plot. In detail, the scatter diagram visualizes the number of messages for each 

session [reciprocal and non-reciprocal] for all cases (Figure 14 (c)). We can observe that the 

exchanging messages for all sessions are presented in less than 100 messages per session 

and just few of them exceed the 100 messages.  

 
Figure 14. Messages of Non-Reciprocal, Reciprocal and all Sessions for All Cases | Session Type: 1 

 

Furthermore, the increment of the time window between chats (i.e., session type 3) confirms the 

low number of exchanging messages between the victim and the predator, which is, for non-

reciprocal sessions, presented in less than 100 messages per session for almost all the sessions 

(Figure 15 (a), (b), (c)). Regarding the reciprocal sessions we notice that for the longer time window 

of session type 3, the exchanging messages increase for most of the reciprocal sessions and are 

presented in less than 250 messages per session. 

 

(a) (b) 

(c) 
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checkIfSessionIsReciprocal 
checkIfSessionIsReciprocal gets as input the total number of predator’s messages and the total 

number of the victim’s messages name of a case and returns a Boolean value that indicates if the 

session is reciprocal (returns True) or non-reciprocal (returns False). 

percentage 
percentage gets as input two numbers (part and whole), calculates and returns a float number that 

represents the relation between part and whole expressed in percentage. 

CaseStatsPrint 
CaseStatsPrint prints the statistics for all cases of the Perverted Justice dataset. It gets as input a list 

of dictionaries, which contains useful statistical data for all cases and sessions (reciprocal and non-

reciprocal). Although it was initially developed for testing and verifying the visually provided 

statistics based on these data, it is provided in the current delivered in source code, since it might be 

also useful for next developments 

 
Figure 15. Messages of Non-Reciprocal, Reciprocal and all Sessions for All Cases | Session Type: 3 

 

 

 
(c) 

(a) 
(b) 
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2.5. Conclusion 

During this work the Perverted Justice dataset was corrected and enriched, while several APIs for the 

analysis of the dataset with more advanced statistical and machine learning techniques dataset were 

developed. These APIs led to some meaningful conclusions. Initially, the number of messages 

exchanged during a day, but also over the course of several days was extracted and the users’ 

activity was identified. In doing so, indications of whether bots are used to exchange messages can 

become available. In addition, the density of the messages and well as the existence of sessions with 

activity only from one of the two participants can be distinguished by selecting different session 

durations. Finally, the time to reply to the other participants’ messages can show how eager the 

predator and/or the victim are to continue the conversation.  

Subsequently, the reciprocal and non-reciprocal sessions for all cases of the Perverted Justice 

dataset were investigated leading to the following conclusions:  

▪ The percentage of non-reciprocal sessions is maintained at a relatively low level (10%-40%) 

as the time window between two consecutive messages is small (30sec), while it increases 

(10%-80%) as the time window grows.  This outcome can be interpreted as follows: 

predators tend to insist long enough before aborting a conversation with their potential 

victim, even when he or she does not respond to their messages. 

▪ However, the length of the time window seems not to affect the cumulative percentage of 

non-reciprocal sessions:  90% of all cases correspond to about 50% of the non-reciprocal 

sessions both for small or larger time windows. 

▪ Almost all non-reciprocal sessions are characterized by a low number of exchanging 

messages between the victim and the predator, while reciprocal sessions present a relatively 

larger number of exchanging messages. 

3. Identification of Datasets Including Real and Friendly Chat Dialogues 

3.1. Project Description and Motivation 
Subsequently, the research interest focused on the identification of available datasets including chat 

conversations between what can be considered benign users (i.e., users that have conversations in a 

friendly or collaborative context) or that include real every-day dialogues between minors (8-18 

years old), in a friendly context. The datasets that were found did not meet the requirements and 

due to this reason, they were not utilized for further analysis.  

3.2. Design of Questionnaire to Investigate the Online Communication 

Preferences of Minors 
Given the difficulties on finding an appropriate dataset from real data of students’ friendly online 

converse actions, the opportunity to create our own dataset from real data of students’ friendly 

online conversations was investigated. Towards this end, as initial step, an online questionnaire was 

created in order to investigate which social networks do minors mostly use to chat with their friends 

(Figure 16). The questionnaire is available in Greek at https://goo.gl/forms/lnlaLWpYQJk21gQv2 and 

will be translated also in English.  
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The survey sample concerns students (8-17 years old) who belong to CoderDojo Thessaloniki, a 

volunteer community, which is part of the CoderDojo Foundation. The CoderDojo Foundation was 

informed about the current state regarding legal and GDPR issues on utilizing students’ data stored 

in CoderDojo’s Zen platform, which is GDPR compliant. 

 
Figure 16. Questionnaire to investigate the online communication preferences of minors (in Greek) 

The process for the creation of a new applicable dataset includes following steps: 

i. Both parents and students registered on Zen platform, will be contacted and requested to 

provide us the permission, based on GDPR, to use their contact data (i.e. email) from 

CoderDojo’s Zen platform, on behalf of the ENCASE project. Towards this end, an official and 

detail informative letter must be prepared by the ENCASE project, to be shared with the 

potential subjects of the survey.  

ii. The questionnaire will be shared online with the students aiming to identify the 

communication tools the students prefer.  The analysis of the survey will identify the 

communication tool which will be selected for collecting the appropriate data for the 

dataset. 

iii. Having secured all the necessary legal requirements of the project, the permission and 

consent of both parents and students will be requested to provide us the students’ personal 

chat logs to create the dataset of real friendly dialogues. Towards this end, the development 

of a customized software is considered necessary for filtering and encrypting all personal 

data that may appear on students’ chat logs (i.e. name-surname, phone number, post 

address, email, etc.). 

Summarizing, the creation of a new dataset will exploit following data: 

▪ Existing data from the CoderDojo’s Zen platform 

− Name / Surname 

− email: To contact parents-youths 

▪ Private data that will be collected  
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− Regarding the online communication tools and OSN usage (through the online 

questionnaire) 

− Chat logs from kids’/youths’ everyday online personal communication interactions with 

friends/peers, to identify patterns in dialogues conducted in a friendly manner 

3.3. About CoderDojo Thessaloniki   

The CoderDojo Thessaloniki club is part of the global CoderDojo movement, a global network of free, 

volunteer-led and community-based programming clubs for young people between 7-17 years old.  

CoderDojo Thessaloniki offers free and not-for-profit regular sessions for young people, where they 

can learn to code, build a website, create an app or a game, and explore technology in an informal, 

creative, and social environment. Dojos are set up, run by and taught at by volunteers. The 

CoderDojo Foundation was established in 2013 by CoderDojo co-founder James Whelton. CoderDojo 

Thessaloniki was founded by Theodouli Terzidou in 2014 and is hosted at the facilities of The 

University of Sheffield International Faculty, CITY College in Thessaloniki.  

To attend a Dojo at CoderDojo Thessaloniki, parents and students have to register to 'Zen', the 

CoderDojo community platform hosted at zen.coderdojo.com.  Moreover, Zen is a platform for 

CoderDojo community members (Champions, Mentors, Parents and Youth Attendees) to search for 

local Dojos, create listings for their Dojos on the publicly viewable Dojo database, issue and book 

tickets for their Dojos, participate in the CoderDojo web forums and manage their Dojo volunteers. 

The CoderDojo Foundation offers this website, including all information, tools and services available 

from this site to its users, conditioned upon their acceptance of all terms, conditions, policies and 

notices stated here. The Terms and Conditions are a legal contract between the users and the 

CoderDojo Foundation regarding users’ use of Zen. 

Zen is operated and presented to users by the CoderDojo Foundation, with registered address 

Dogpatch Labs, The CHQ Building, Custom House Quay, Dublin 1, Ireland. CoderDojo Foundation is 

an Irish Company registered under company number 524255 and a registered charity in Republic of 

Ireland, CHY 20812. 

3.4. Translate of the Questionnaire for Online Communication Tools 
The questionnaire for the investigation of minors’ online communication habits and preferences was 

created in Greek language. It might useful to translate it also in the languages of the ENCASE 

partners (e.g., Italian, English, Spanish) to be shared and completed also by minors from other 

countries. Note that in this case the General Data Protection Regulation (GDPR) must be ensured, as 

well the legality of the whole research process. 

3.5. Future Work 

Some thoughts about future work are as follows: 

i. Research minors’ online communication habits and preferences. An initial investigation of 

students’ online communication preferences would be useful to identify popular 

communications tools that children and adolescents use in their everyday life. The designed 

questionnaire could be utilized for this purpose.  
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ii. The results of this research are expected to reveal tools and issues on which is needed to 

focus on regarding kids’ and teens’ online safety. Moreover, one or two communication 

tools could be selected for further research.   

iii. Create our own suitable dataset. Given the difficulty in finding available datasets, which 

include real every-day online dialogues between minors (8-18 years old), in a friendly 

context is proposed to create a new dataset that will meet the requirements of the ENCASE 

project. A suitable sample towards this end could be minors, who, and their parents, will 

give their consent to the storage of their personal-friendly online conversations. To ensure 

their anonymity, a tool could be developed to anonymously store their online dialogues 

(keep chat logs) for a specific period and for a specific communication tool (select one from 

the most popular tools, as these emerged from an initial research, as this was described 

above (see i.)). 

iv. Comparison of Perverted Justice dataset with the new created friendly Dataset. A 

comparison of Perverted Justice dataset with another “friendly” one is needed to identify 

differences and patterns in their behavior, as well as to develop a decision-making 

procedure to identify predator from any other user. 

v. Extend the Python source code to visualize statistics for all session types. Towards this end 

it has considered the existence of the sessionType variable, which is already available and 

provided by the current developed code and needs just to be adopted (iterate for all 

SessionIds from 1 to 4). 

vi. Create a Box Whisker Plot to present visually statistics for the messages’ distribution of 

Non-Reciprocal sessions for each Case of the Perverted Justice dataset. Note that the 

needed data for the creation of the particular Box Whisker Plot have been considered and 

are available in the current developed code through the case_session_stats and 

SessionsStats data structures. 

4. OSN Malicious Users Time-dependent Detection 

4.1. Project Description and Motivation  

This project focused on identifying, extracting and cleansing of group conversations with the 

purpose of extracting bidirectional friendly conversation datasets between two group participants, 

while a collective approach for analyzing chat conversations was followed.  

Previous work conducted in the project context focused on predator-victim chat conversation and 

attempted to organize chat lines from the same person (predator or victim) into common behavior 

blocks (sessions). These blocks allowed the identification of specific patterns of behavior and how 

these affect the behavior or reaction of the chat responder. In this work, a thorough study of the 

current approaches regarding sentiment and affective analysis was performed, including their 

implementation using Natural Language Processing (NLP) and machine learning approaches.  

The Perverted Justice2 dataset has been utilized for the purposes of our research. This dataset does 

                                                           
2
 http://www.perverted-justice.com/index.php 
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not have non-harassment conversations that can be used to differentiate the identified patterns. 

Moreover, regular conversations between chat users and individuals are not publicly available and 

protected under privacy policies. Considering these gaps, the current work has focused on looking 

for other ways to obtain the desired data sets that will enhance and evaluate the predator 

identification methods that have been created. The proposed methods for overcoming this issue are 

presented in the next subsection (4.2). 

In this framework, the following three approaches were investigated: 

1) Synthetic data generation 

Synthetic data is information that's artificially manufactured rather than generated by real-world 

events. Synthetic data is created algorithmically, and it is used as a stand-in for test datasets of 

production or operational data to train machine learning models. Synthetic data are often generated 

to meet specific needs or certain conditions that cannot be found in the real data. Synthetic data 

also fill the purpose of protecting privacy and confidentiality of real-world data, which is the main 

reason that we consider this approach for the acquisition of a conversation between two individuals. 

This can be applied to create a dataset which contains the generated results that are the possible 

effect scores produced by the sentiment and affective analysis. 

2) Chatrooms  

The main feature of chatroom conversations is that they are often moderated, so it is highly unlikely 

for a user to misbehave or show any signs of malicious behavior. This can ensure that the 

conversations that are extracted from these datasets will provide a good sample for labeling the 

conversations of common users. Chatroom conversations can be useful to acquire conversations 

between two individuals because at some level the behavior of the participants in certain situations 

is similar with the behavior of one-to-one conversations.  

3) Datasets for chatbots training 

An effective chatbot requires a massive amount of data in order to quickly solve user inquiries 

without human intervention. This leads to the creation of many task-oriented dialog data to train 

these complex systems. These Datasets can be considered as one-to-one chat conversations, as they 

are created with the purpose of simulating conversation between individuals. Furthermore, we can 

claim that these datasets don not contain conversations that can be considered offensive or 

malicious. 

Based on the above, we focused on the first two approaches, trying to produce benign datasets that 

can be used to evaluate the sexual predator identification methods that were previously developed 

in the project. The datasets that were examined are presented in Table 2. 

Table 2. Chatroom datasets identified online and obtained 

 Name Attributes Format Description 

Chatroom 
Datasets 

FreeCode 
Camp

3
 

Username 
Text 

CSV 
files 

The files contain the posts from students, 
bots, moderators and contributors in the 

                                                           
3
 https://www.kaggle.com/freecodecamp/all-posts-public-main-chatroom 
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Sent 
Mentions  

main Gitter chatroom between 31-Dec-2014 
until the first days of Dec-2017. There are 
around 5 million posts from near 400,000 
users (estimates) 

Stack 
Exchange 
Data Dump

4
 

CommentCount 
AnswerCount 
Score 
ViewCount  
Body 

XML 
files  

There are multiple files containing Posts, 
Comments and Post History of the 
StackExchange platform

5
 

Chatbot 
training 
Datasets 

Maluuba 
Frames 
Dataset

6
 

user_id 
turns 
wizard_id 
labels 

JSON 
file 

A corpus of 1369 human-to-human  dialogues 
with an average of 15 turns per dialogue. 

Cornell 
movie-
dialogs 
corpus

7
 

movie_lines 
movie_conversations 

TXT 
files 

This corpus contains a large metadata-rich 
collection of 220,579 conversational 
exchanges between 10,292 pairs of movie 
characters 

4.2. Methodology 

The work that has been conducted for the implementation of the first two proposed methods is 

described in this subsection. 

1) Synthetic data generation 

In the framework of this method, we chose to synthesize data that simulate possible affects scores 

that can be produced by a sentiment and affect analysis. Affects scores were selected to be 

generated for the reason that they are quantitative, and this makes them suitable for this approach. 

Our approach for this method follows the next steps: 

i. Use the “WP4 Encase Demo” API8 to get the affect analysis for each case in json format and 

use the following part of the response to get the affect scores. Affect scores are provided in 

the following json format: 

"ChatLogs": 

{ 

"Index": 0, 

"Date": "2018-11-01T12:00:00.000Z", 

"Username": "string", 

"PV": "string", 

"Text": "string", 

"Affect": { 

"anger": 0, 

                                                           
4
 https://archive.org/details/stackexchange 

5
 https://stackexchange.com 

6
 https://datasets.maluuba.com/Frames 

7
 http://www.cs.cornell.edu/~cristian//Cornell_Movie-Dialogs_Corpus.html 

8
 WP4 ENCASE DEMO API 
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"anticipation": 0, 

"disgust": 0, 

"sadness": 0, 

"joy": 0, 

"surprise": 0, 

"trust": 0, 

"fear": 0, 

"positive": 0, 

"negative": 0 

} 

Sum of all affect scores for the ‘victim’ and ‘predator’ of each case and store them in two datasets, 

one that contains the data of the victims and one for the predators. These datasets have the 

following format (Table 3): 

Table 3. Sum affect scores for each case 

 
Standardization of these 2 datasets. The standardization in our case was to convert the scores to 

percentages. New datasets format is depicted in Table 4. 
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Table 4. Percentages of affect scores for each case 

 
 

Standardization of all data in order to observe the distribution for all eight affects. All affects is 

considered to follow normal distribution. Indicatively the distribution of “Fear” affect, as shown in 

Figure 17. 

 Calculation of the mean values and standard deviation for each affect 

 Calculation of the mean values and standard deviation for the generated data. Using T-test 
procedure9 we choose new mean values and standard deviation values that are statistically 
independent from the original dataset. 

 Generation of the desired data using the above calculated values as input to a NumPy’s 
function10 that generates random data following normal distribution 

 
Figure 17. 'Fear' affect distribution 

The next steps are: i) to compare the generated data with the original dataset to validate that they 

represent different groups of people, and ii) to check whether they match the analysis of 

                                                           
9
 http://www.quantitativeskills.com/sisa/statistics/t-test.htm 

10
 https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.random.normal.html 
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conversations that will potentially be retrieved by other methods. 

2) Chatroom conversation parsing 

As described in the previous section, the goal is to use chatroom conversation and extract 

conversations between two individuals. Table 5 presents a snapshot of the chatroom that was used 

for examining our approach. At first glance it seems that the conversation topics are abstract. 

However, looking more closely, it seems that there are parts that carry out a one-to-one 

conversation, as is the case in Figure 18 between users 'sircharleswatson' and 'odrisck'. 

In the framework of this approach we attempt to retrieve this kind of conversations between two 

users. Towards that goal the following steps were performed: 

 Removing the records of the users that are not active. Active users are considered the users 

that have sent a number of messages that are over a limit. Pending further limit examination 

in our preliminary experiments this limit was set to 20 messages. 

 Combination of consecutive messages of the same user that don’t have a time difference 

between them that is longer than a given time period. In our case the period was set to 1 

hour. 

 Determination of the criteria to be met so that a message to be considered as part of a 

conversation. These criteria are the following: 

a. Message contains reference to a user. eg. “Hello @User3245” or “@User3245 what’s 

up? ” 

b. Message is a part of a brief conversation between two users (e.g. the two user exchange 

a number of messages without any other user to intervene) in the chatroom. For 

instance: 

-User1: “Good morning, fine day for driving.” 

-User2: “Yes, the weather looks sunny today.” 

-User1: “Feels hotter than yesterday.” 

-User2: “That’s for sure!!” 
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Table 5. Chatroom snapshot 

 

4.3. Initial Results 
We first test our “chatroom conversation parsing” method on the FreeCode camp dataset that 

consists of 65500 messages, to observe some initial results and examine the potentials for this 

approach. Table 6 depicts how the messages in a chatroom conversation are differentiated by our 

approach. Messages with orange color are the ones that are from or to an inactive user and were 

removed from the dataset, with blue and green color are the messages of each user. Table 7  shows 

how the dataset changes after the process described in the previous subsection.  
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Table 6. Chatroom messages distinction 

 
 

Table 7. Chatroom snapshot after processing 

 

Running our method in the whole Free Code Camp dataset yields the following results: 

▪ Out of 1215 Total Users, 1065 Users were considered as “Inactive” and 150 as “Active” 

▪ 2477 Conversations between two users were retrieved 

The above shows that parsing a chatroom conversation can provide a large number of conversations 

even if the number of active users is reduced drastically compared with the total number of users. 

4.4. Future Work 

Future work will be directed towards the fine-tuning of the “chatroom conversation parsing” 

method. Our plan is to evaluate different values for the limit of inactive users and different time 

periods for messages to be included in a session. Then will try to determine the best parameters for 

the approach by comparing the different results. In addition, we plan to test our approach using 

other chatroom datasets, thus creating a complete dataset of two person conversations. 

Furthermore, we will attempt to implement all approaches so that there can be a comparison 

between the different methods.   
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5. Towards Identifying Predator Behavior in Chat Conversations  

5.1. Project Description and Motivation 

The aim of this work was to discover multiple patterns indicative of predatory (sexual predators or 

cyberbullying) behavior over time by analyzing OSN user interactions. Advanced data mining and 

analytics techniques were proposed in order to leverage the OSN users’ concurrent activities that 

indicate behavioral variations and spikes with emphasis on advancing the state of the art on 

anomaly detection in OSN. The purpose was the investigation of the applicability of text processing 

and data mining techniques, and related APIs and libraries, for the analysis of the Perverted Justice 

dataset towards the identification of predator behavior in chat conversation. The implementation 

was performed in Python language and the produced identification algorithm was integrated in the 

already deployed module for predator detection.  

In this section, the fields of the Perverted Justice dataset are briefly described and, then, the 

information that is used during our experimental study is presented. Table 8 shows the structure of 

available information in the dataset. Each record is related to a post whose original text is kept in the 

field “Text”. The rest fields such as the “Date”, “Username”, “PV”, “Affect”, “Sentiment”, 

“TextCleaned”, “Index”, “Case”, and “SessionIds” are referring to the date/time of the post, the 

identity (username) of the user that posts the comment, the nature of the user (P for predator, V for 

victim), the affect scores of the post, the sentiment scores of the post, a cleaned version of the text, 

the post’s index, the case name and the session id as it is produced according to the time-dependent 

analysis, respectively. Three collections were created in MongoDB for a clear and convenient 

creation of the training/test sets that we used in our study. The first collection includes the original 

posts of each chat dialogue, i.e., the dialogues between the predators and the victims. However, due 

to our interest in analyzing separately the predators’ from the victims’ posts, we created two 

additional collections, one for the chats containing only the predators’ posts and an additional one 

for the chats of the victims’ posts.  

Table 8. Perverted Justice dataset 

 

Specifically, for the creation of the first collection, we split each transcript of each case up to 8 parts 

based on the “Index” field of the initial dataset (see the “Index” fields in Table 9). For example, 

suppose a trivial case that includes 16 posts which means that the values of “Index” for each 

record/post of the initial dataset range in [0, 15]. We divided the chat into 8 parts by creating groups 

of consecutive posts. In this case, the first group of posts contains the first 2 posts (initial collection 

“Index”=0,1) and the “Index” field in the new collection has the value 0, the second group of posts 

contains the next 2 posts (initial collection “Index”=2,3) and the “Index” field in the new collection 
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has the value 1, etc.  Then, for each group of posts, we concatenated the text of the corresponding 

posts (see the “Text” fields in Table 9) in order to create the updated field “Text” of the new 

collection. Consequently, an updated “Affect” field was created which contains the sum of the initial 

“Affect” fields of the corresponding posts (see the “Affect” fields in Table 9)). Furthermore, we 

added an additional field called “numPosts” where we kept the number of posts included in the 

corresponding group of posts of the transcript.  Finally, the field “Case” has the same use as 

previously.  Table 10 shows the structure of the new collection. 

Table 9. Example for the conversion of the initial record scheme to the new record scheme 

 
Table 10. Training set information 

 
 

Similarly, the rest two collections, concerning the predators’/victims’ posts, were created. The first 

one includes only the predators’ posts along with their related fields as described above whereas the 

third one keeps the similar information only for the victims’ chats.  Segmenting the text files into 8 
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equal parts allows us to treat every segment as a separate phase, giving us the opportunity for a 

more detailed quantitative analysis. Of course, this type of segmentation offered us a flexible way to 

concatenate the segments by increasing “Index” in order to get the whole chat as one segment or to 

deal with fewer almost equal segments, e.g. 4 or 2. 

5.2. Feature Engineering 

Our goal was to use both the text and the affect/sentiment scores in order to train and evaluate 

classification algorithms able to distinguish between predators, victims and friendly conversations. 

Towards that first we perform a lexicographical preprocessing in order to cleanse our dataset. 

Following we used several methods from the literature to create vectors of word representation for 

the conversations texts. These representations are then used as features for training the 

classification algorithms. Both the aforementioned steps are described in this section.  

5.2.1. Pre-processing 

Initially, each chat text was converted to lower case and english stopwords and tokens consisting 

only of one repeatable character (e.g., the token “mmmmmmmm”) were removed. Then, either 

stemming or lemmatization was applied based on the type of the text representation we use, i.e., 

GloVe [1] or TfIdf [2, 3, 4], respectively (both techniques of text representation will be discussed 

further below). Notice that we keep only the stemmed/lemmetized tokens whose length is greater 

than 3. The goal of both stemming and lemmatization is to reduce inflectional forms to a common 

base form. Stemming is the process of reducing inflected (or sometimes derived) words to their 

word stem by removing their derivational affixes. Lemmatization usually uses a vocabulary and 

morphological analysis of words to return the base or dictionary form of a word, which is known as 

the lemma. For a better comprehension see the following examples (Table 11). 

Table 11. Stemming  vs lemmatization 

 

5.2.2. Features related to the text of the (segments’) chats 

In most machine learning and data mining tasks, the interest is in comparing objects in order to 

cluster or classify them towards distinct categories with specific characteristics that can then be used 

towards the classification of new incoming cases and so on. For this reason, the texts should be 

represented in a form that the measurement of similarity/distance among the texts can be 

effectively estimated. The solution to this problem is the vectorization of the text utilizing a specific 

text representation technique. In the following we briefly describe three such vectorization 

methods.  
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Text representation - the simple BOW technique 

The simplest model, in this area, is considered to be Bag-of-Words (BOW) model. According to this 

model, a text (such as a sentence or a document) is represented as the bag of its words (without 

taking into account grammar and word order). 

In the following example, we see all the stages that are required for the conversion of two simple 

documents into vectors based on the bag-of-words model (including a few basic preprocessing steps 

described earlier). 

Here are the two simple text documents: 

1. John likes to watch movies. Mary likes movies too. 

2. John also likes to watch football games. 

After the basic preprocessing stages (conversion to lower case, stop-words removal and stemming), 

we get: 

i. john like watch movi mari like movi  

ii. john also like watch footbal game 

Based on these two preprocessed text documents, a vocabulary set is constructed as follows: 

["john","like","watch","movi","mary","also","footbal","game"] 

Then, each preprocessed text is expressed as a vector which contains as values the number of 

occurrences of each vocabulary word (Table 12). The dimension of each vector is equal to the size of 

the vocabulary set, i.e., 8. 

Table 12. Example of BOW text representation 

 

TfIdf technique 

In our study, we employ a more advanced text representation model called Term Frequency-Inverse 

Document Frequency (TfIdf). TfIdf is a popular weight often used in information retrieval and text 

mining. This weight is a statistical measure used to evaluate how important a word is to a document 

in a collection. The importance increases proportionally to the number of times a word appears in 

the document but is offset by the frequency of the word in the collection. Typically, the TfIdf weight 



 

 

Deliverable D4.2 “Software libraries built on Graphos.ml using data 

mining for the detection of aggressive or distressed behaviors in OSN”  

 

37 
 

is composed by two terms: the first computes the normalized Term Frequency (Tf: the number of 

times a word appears in a document divided by the total number of words in that document) and 

the second term is the Inverse Document Frequency (Idf: computed as the logarithm of the number 

of the documents in the corpus divided by the number of documents where the specific term 

appears). 

Tf(t) = (Number of times term t appears in a document) / (Total number of terms in the document) 

Idf(t) = log_e(Total number of documents / Number of documents with term t in it) 

Let us illustrate this through a small example:  

Consider a document containing 100 words wherein the words “history”, “there” and “war” appear 

3, 30 and 3 times, respectively. The corresponding term frequencies for each term are the following: 

Tf(history) = Tf(war) = (3 / 100) = 0.03 and Tf(there) = (30 / 100) = 0.3 

Now, assume we have 10,000,000 documents and the words “history”, “there” and “war” appear in 

1,000, 10,000,000, and 500 of these, respectively. Then, the inverse document frequencies for each 

term are the following: 

Idf(history) = log(10,000,000 / 1,000) = 4,   Idf(there) = log(10,000,000 / 10,000,000) = 0 and  

Idf(war) = log(10,000,000 / 500) = 4.3 

Thus, the TfIdf weights are the products given below: 

TfIdf(history) = 0.03 * 4 = 0.12, TfIdf(there) = 0.3 * 0 = 0 and TfIdf(war) = 0.03 * 4.3 = 0.129 

which means that the most important word for the specific document is the term “war”, despite the 

fact that appears less times than the term “there”. Particularly, the Idf (there) is equal to 0 indicating 

that it is a very common (unimportant) term that occurs in all documents of the collection.  Once 

again, the dimension of each TfIdf  vector is equal to the size of the vocabulary set. 

GloVe technique 

TfIdf and BOW vectors are usually high-dimensional (thousands of dimensions) and sparse (most 

elements are zero). On the contrary, word embeddings is an alternative technique that expresses a 

word as a real-value dense vector of low dimension (usually about 50-300 dimensions). More 

specifically, word embedding methods learn a real-valued vector representation for a predefined 

fixed sized vocabulary from a corpus of text. The learning process is either joint with the neural 

network model on some task, such as document classification, or is an unsupervised process, using 

document statistics. 

In this experimental study, the GloVe technique, which is a log-bilinear model with a weighted least-

squares objective, was used. The main intuition underlying the model is the simple observation that 

ratios of word-word co-occurrence probabilities have the potential for encoding some form of 

meaning.  The training objective of GloVe is to learn word vectors such that their dot product equals 

the logarithm of the words' probability of co-occurrence.  
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To sum up, GloVe word embeddings are used for various NLP applications such as part-of-speech 

tagging, information retrieval, question answering etc. However, it is quite a troublesome work to 

prepare word embeddings: we had to download large-scale data, preprocessed it, learnt it over a 

long time, checked the result and perform many hyperparameters tuning. So, as a first step we used 

the 300d pre trained word vectors that were created by training on Wikipedia 2014 + Gigaword 5 

which have 400000 vocabulary size, uncased and are available here by Stanford.  

The GloVe representation for a chat segment was produced by averaging (element-wise) the pre 

trained word vectors of the words that appeared in the corresponding text segment. We should not 

omit to say that in case of the TfIdf text representation we applied stemming, whereas in case of the 

GloVe text representation we preferred to use lemmatization, as it is more likely to meet the word 

lemmas than the stems in the vocabulary of the 400000 words. 

5.2.3. Features related to the affects and number of posts of the (segments’) chats 

Additionally, we used the affects as features (i.e., 10 additional features). Particularly, we normalized 

the affects’ scores dividing each one by the number of posts that correspond to the specific chat 

segment.  Finally, the number of posts of the chat segment is the last feature that was used. 

5.3.  Dataset Description 
In this section, we give the overall picture of the training/test set. In the simple case that the chats 

are not separated into parts, each one chat consists of one segment, i.e., the Segment 1 (see Table 

13). For example, when we adopted the GloVe text representation technique, each instance of the 

training/test set has 311 features: the first 300 correspond to the vector’s dimensions (T1-T300 

features), the next 10 features to the (normalized by the number of chat’s posts) affects scores (A1-

A10 features), and the last one to the number of chat’s posts (#posts), to cover for temporal 

behavioral characteristics.    

We also provide an example where each chat is divided into two parts, i.e., the chat consists of two 

segments, i.e., the Segment 1 and Segment 2 (see Table 14). For every segment the features 

previously discussed are computed, separately. In other words, the concatenation of the two feature 

vectors produces the final feature vector of each training/test set instance (chat text). 

Table 13. Training/test set features - Version 1 

 
  



 

 

Deliverable D4.2 “Software libraries built on Graphos.ml using data 

mining for the detection of aggressive or distressed behaviors in OSN”  

 

39 
 

Table 14. Training/test set features - Version 2 

 
In cases where we split each chat up to four or eight parts, i.e., each chat consists of four or eight 

segments, respectively the corresponding feature vectors of the training/test set instances were 

generated in a similar way. 

5.4.  Experimental Study 

In this section we briefly describe the experimental work performed in the context of this study. 

5.4.1. One-class classification 

One-Class SVM is particularly useful in scenarios where you have a lot of "normal" data and not 

many cases of the anomalies you are trying to detect. For example, if you need to detect fraudulent 

transactions, you might not have many examples of fraud that you could use to train a typical 

classification model, but you might have many examples of good transactions.  SVMs are supervised 

learning models that analyze data and recognize patterns, and that can be used for both 

classification and regression tasks. Typically, the SVM algorithm is given a set of training examples 

labeled as belonging to one of two classes. An SVM model is based on dividing the training sample 

points into separate categories by as wide a gap as possible, while penalizing training samples that 

fall on the wrong side of the gap. The SVM model then makes predictions by assigning points to one 

side of the gap or the other. 

Sometimes oversampling is used to replicate the existing samples so that you can create a two-class 

model, but it is impossible to predict all the new patterns of fraud or system faults from limited 

examples. Moreover, collection of even limited examples can be expensive. Therefore, in one-class 

SVM, the support vector model is trained on data that has only one class, which is the “normal” 

class. It infers the properties of normal cases and from these properties can predict which examples 

are unlike the normal examples. This is useful for anomaly detection because the scarcity of training 

examples is what defines anomalies: that is, typically there are very few examples of the network 

intrusion, fraud, or other anomalous behavior.  

Experimental setup and results 

We trained/tuned/evaluated the One-Class SVM (OC-SVM) model on the predators’ chat texts 

(training set) using 10-fold CV. We also tuned/evaluated the model using the victims chat texts (test 

set). We experimented with various feature sets as they are described in detail in Subsection 6.1.    
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In Table 15, we give the most interesting (highest) precision and recall scores on the predators 

(PPrescision-PRecall, 10-fold CV on the predators’ training set) and the victims (VPrescision-VRecall, 

victims as test set) achieved during the experimental study. We see that the performance is identical 

either we use GloVe features or not. Probably, this happens due to the high frequency of some 

words both in predators’ and victims’ chats. We also notice that the model built on the training set 

version that uses the whole chats (not divided chats in segments) performs better, whereas the 

more the segments of the chats in the training/test set, the lower the recall score on predators.  

Table 15. Experimental study results 

Text 

Representation 

#segments 

per chat 
Feature set 

OC-SVM params 

(kernel-nu-gamma) 

PPrecision PRecall VPrecision VRecall 

GloVe 1 vector+affects+#posts sigmoid-0.5-0.001 1.00 0.75 1.00 1.00 

GloVe 2 vector+affects+#posts sigmoid-0.5-0.01 0.70 0.69 1.00 1.00 

GloVe 4 vector+affects+#posts sigmoid-0.5-0.01 0.70 0.68 1.00 1.00 

GloVe 8 vector+affects+#posts sigmoid-0.5-0.01 0.70 0.60 1.00 1.00 

- 1 affects+#posts sigmoid-0.5-0.001 1.00 0.75 1.00 1.00 

- 2 affects+#posts sigmoid-0.5-0.01 0.70 0.69 1.00 1.00 

- 4 affects+#posts sigmoid-0.5-0.01 0.70 0.68 1.00 1.00 

- 8 affects+#posts sigmoid-0.5-0.01 0.70 0.60 1.00 1.00 

TfIdf 1 vector+affects+#posts  poly-0.5-0.001 1.00 0.50 1.00 0.51 

5.4.2. Community Detection 

The Louvain community detection algorithm [5+ was applied on the predators’ and victims' chats. 

The nodes of the undirected graph are the predators and the victims, while the edge weights of the 

graph are calculated based on the following score: 

1 - (EuclideanDist(vectori, vectorj)/max) 

where EuclideanDist(vectori, vectorj) is the Euclidean distance between the corresponding vectors of 

each pair of nodes (i, j) with i≠j, and max is the maximum Euclidean distance among the node pairs. 

A quite satisfying number of well-separated communities were detected. However, the communities 

include both predators and victims in almost equal percentages.  
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5.5.  Software 

We utilized the Gensim python library to represent the chat texts as TfIdf vectors and NLTK, which 

offers a variety of text processing libraries for stemming, lemmatization etc.  We used the 

OneClassSVM class from sklearn python library to perform one-class classification.  For the 

community detection experimental study, we used Gephi which is an open-source network analysis 

and visualization software package. 

5.6.  Conclusion  

In this work, we tried to distinguish the predators’ from the victims’ chats utilizing data mining and 

text analytics techniques. Our empirical study offers evidence that the one-class classification 

approach can infer the properties of the predators’ chats and from these properties can predict 

which examples are unlike the predators’ chats, i.e., victims chats.  

5.7.  Future Work  

In the near future we intend to build on top of this work, and perform a better preprocessing of the 

chat texts by escaping HTML characters, decoding data, handling the apostrophe/slang occurrences, 

extending the stop-words’ list, splitting attached words and standardizing words. We would also like 

to apply feature selection approaches and re-run the one-class classification experiments on the 

improved training/test sets.  

5.8.  Section References 
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Representation. EMNLP 2014: 1532-1543 
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6. Early Cyberbullying detection using emotion recognition – ongoing 

work 

6.1. Project Description and Motivation 

In this task, we aim to detect cyberbullying behavior against minors. Our approach is 
through the emotional state of the minor. If a minor is angry/sad/frustrated this can be an 
early indication of being cyber bullied. In this task, we formulate, train and deploy a machine 
learning algorithm to predict three emotional states based on the minor’s OSN conversation. The 
emotions in question are anger, sadness and frustration and their predictions will give an early 
indication of cyberbullying towards the minor. To achieve it, we developed an innovative machine 
learning model that efficiently captures the correlation of the conversation advancement with the 
emotional state of the minor.  

6.2. Methodologies and tools 

The machine learning model was conceptualized with the purpose to reduce the ambiguity of the 
utterances (spoken sentences in text format) underlying emotions via including the past utterances 
as additional information. The model is formulated and trained in Tensorflow and its functionality is 
utilized in the ENCASE framework using the Falcon software.  

Due to the nature of the task, we have given special attention to make the model fast, accurate and 
real-time applicable. To this end, the model can predict the minor’s emotions live and on the 
conversation progress so far. There is no limitation on what the length of the conversation can be 
which is mainly due to the usage of RNNs and their inherent nature to support variable sequence 
length. 

In more detail, the model formulation consists of an Bidirectional RNN for encoding the spoken 
sentence (list of words) of each speaker into a data representation whose output entails the 
dependencies between the words in the sentence. This representation is followed by, an RNN for 
encoding the conversation (list of sentences) into a data representation that entails the 
dependencies between the sentences in the conversation. The innovation lies in the usage of a self-
attention mechanism to infer the importance of each sentence to the emotion in question. This 
information is used to derive more accurately results regarding the emotional state of the minor.  

In conjunction, the model includes an embedding layer, before the Bidirectional RNN, for the 
representation of the words to numerical vectors. The whole process is trained into an end to end 
manner that renders the model flexible enough to capture the dependencies between the 
conversation and emotions. Specifically we trained the model on machine learning servers provided 
by TID and we used the IEMOCAP dataset for training. The dataset consists of annotated 
conversations with each sentence manually annotated by three annotators with its corresponding 
emotion. 

6.3. Conclusion 
Our innovative machine learning model has managed to improve the state of the art in the 
predictions of emotions in the IEMOCAP dataset. This has shown the importance of the usage of past 
utterances to distinguish the emotional state of the speaker.  
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6.4. Future Work 

The emotional states are an indirect way of detecting Cyberbullying and in our demos we are using 
heuristic rules to define the possibility of the minor being cyberbullied. For instance, if he/she is sad 
and frustrated above a specific threshold. The applicability of the model in the OSN domain is under 
investigation and the logs derived from the usage of the model will provide valuable insights for its 
further improvement. Furthermore, we are considering the possibility of forming a dataset to assist 
further research on the emotional results of cyberbullying.  

7. Quantitative Approach to Understanding Online Antisemitism  

7.1. Project Description and Motivation 
A new wave of growing antisemitism, driven by fringe Web communities, is an increasingly worrying 

presence in the socio-political realm. The ubiquitous and global nature of the Web has provided 

tools used by these groups to spread their ideology to the rest of the Internet. Although the study of 

antisemitism and hate is not new, the scale and rate of change of online data has impacted the 

efficacy of traditional approaches to measure and understand this worrying trend. 

In this work, we present a large-scale, quantitative study of online antisemitism. We collect 

hundreds of million comments and images from alt-right Web communities like 4chan’s Politically 

Incorrect board (/pol/) and the Twitter clone, Gab. Using scientifically grounded methods, we 

quantify the escalation and spread of antisemitic memes and rhetoric across the Web. We find the 

frequency of antisemitic content greatly increases (in some cases more than doubling) after major 

political events such as the 2016 US Presidential Election and the “Unite the Right” rally in 

Charlottesville. Furthermore, this antisemitism appears in tandem with sharp increases in white 

ethnic nationalist content on the same communities. We extract semantic embeddings from our 

corpus of posts and demonstrate how automated techniques can discover and categorize the use of 

antisemitic terminology. We additionally examine the prevalence and spread of the antisemitic 

“Happy Merchant” meme, and in particular how these fringe communities influence its propagation 

to more mainstream services like Twitter and Reddit. 

Taken together, our results provide a data-driven, quantitative framework for understanding online 

antisemitism. Our open and scientifically grounded methods serve as a framework to augment 

current qualitative efforts by anti-hate groups, providing new insights into the growth and spread of 

antisemitism online. 

7.2.  Results 

In this section, we present our temporal analysis that shows the use of racial slurs over time on Gab 

and /pol/, our text-based analysis that leverages word2vec embeddings [22] to understand the use 

of text with respect to ethnic slurs, and our memetic analysis that focuses on the propagation of the 

anti-Semitic Happy Merchant meme. Finally, we present our influence estimation findings that shed 

light on the influence that Web communities have on each other when considering the 

dissemination of antisemitic memes. 
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7.2.1.  Temporal Analysis  

Anecdotal evidence reports escalating racial and ethnic hate propaganda on fringe Web 

communities [25]. To examine this, we study the prevalence of some terms related to ethnic slurs on 

/pol/ and Gab, and how they evolve over time. We focus on five specific terms: “jew,” “kike,” 

“white,” “black,” and “nigger.” We limit our scope to these because while they are notorious for 

ethnic hate for many groups, these specific words ranked among the most frequently used ethnic 

terms on both communities. Table 16 reports the overall number of posts that contain these terms 

in both Web communities, their rank in terms of raw number of appearances in our dataset, as well 

as the increase in the use of these terms between the beginning and end of our datasets. Also, 

Figure 18 and Figure 19 plots the use of these terms over time, binned by day, and averaged over a 

rolling window to smooth out small-scale fluctuations. We observe that terms like “white” and “jew” 

are extremely popular in both Web communities; 3rd and 13th respectively in /pol/, while in Gab 

they rank as the 9th and 19th most popular words, respectively. We see a similar level of popularity 

for ethnic racial slurs like “nigger” and “kike,” especially on /pol/; they are the 16th and 147th most 

popular words in terms of raw counts. Note that /pol/ has a vocabulary 1.5x times larger than that of 

Gab (see Text Analysis below). These findings highlight that both /pol/ and Gab users habitually and 

increasingly engage in discussions about ethnicity and use targeted hate speech.  
Table 16. Number of posts, and their respective percentage in the dataset, for the terms “jew,” “kike,” “white,” “black,” 

and “nigger” 
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Figure 18. Use of ethnic racial terms and slurs over time on /pol/ 

 
Figure 19. Use of ethnic racial terms and slurs over time on Gab 

We also find an increasing trend in the use of most ethnic terms; the number of posts containing 

each of the terms except “black” increases, even when normalized for the increasing number of 

posts on the network overall. Interestingly, among the terms we examine, we observe that the term 

“kike” shows the greatest increase in use for both /pol/ and Gab, followed by “jew” on /pol/ and 

“nigger” on Gab. Also, it is worth noting that ethnic terms on Gab have a greater increase in the rate 

of use when compared to /pol/ (cf. ratio of increase for /pol/ and Gab in Table 16). Furthermore, by 

looking at Figure 19 we find that by the end of our datasets, the term “jew” appears in 4.0% of /pol/ 

daily posts and 3.1% of the Gab posts, while the term “nigger” appears in 3.4% and 0.6% of the daily 

posts on /pol/ and Gab, respectively. The latter is particularly worrisome for anti-black hate, as by 

the end of our datasets the term “nigger” on /pol/ overtakes the term “black” (3.4% vs 1.9% of all 

the daily posts). Taken together, these findings highlight that most of these terms are increasingly 

popular within these fringe Web communities, hence emphasizing the need to study the use of 

ethnic identity terms over time. We note major fluctuations in the use of ethnic terms over time, 



 

 

Deliverable D4.2 “Software libraries built on Graphos.ml using data 

mining for the detection of aggressive or distressed behaviors in OSN”  

 

46 
 

and one reasonable assumption is that these fluctuations happen due to real-world events. 

7.2.2. Text analysis 

We hypothesize that ethnic terms (e.g., “jew” and “white”) are strongly linked to antisemitic and 

white supremacist sentiments. To test this, we use word2vec, a two-layer neural network that 

generate word representations as embedded vectors [22]. Specifically, a word2vec model takes as 

an input a large corpus of text and generates a multi-dimensional vector space where each word is 

mapped to a vector in the space (also called an embedding). The vectors are generated in such way 

that words that share similar contexts tend to have nearly parallel vectors in the multi-dimensional 

vector space. Given a context (list of words appearing in a single block of text), a trained word2vec 

model also gives the probability that each other word will appear in that context. By analyzing both 

these probabilities and the word vectors themselves, we are able to map the usage of various terms 

in our corpus. 

We train two word2vec models; one for the /pol/ dataset and one for the Gab dataset. First, as a 

pre-processing step, we remove stop words (such as “and,” “like,” etc.) and punctuation from each 

post. We also perform stemming for the words in each post. Then, using the words of each post we 

train our word2vec models with a context window equal to 7 (defines the maximum distance 

between the current and the predicted words during the generation of the word vectors). Also, we 

consider only words that appear at least 500 times in each corpus, hence creating a vocabulary of 

31,337 and 20,115 stemmed words for /pol/ and Gab, respectively. Next, we use the generated 

word embeddings to gain a deeper understanding of the context in which certain terms are used. 

We measure the “closeness” of two terms (i and j) by generating their vectors from the word2vec 

models (hi and hj) and calculating their cosine similarity (cos θ(h1, h2)). Furthermore, we use the 

trained word2vec models to predict a set of candidate words that are likely to appear in the context 

of a given term. 

Table 17. Top ten similar words to the term "jew" and their respective cosine similarity 

 

We first look at the term “jew.” Table 17 reports the top ten most similar words to the term “jew” 

along with their cosine similarity, as well as the top ten candidate words and their respective 

probability. By looking to the most similar words, we observe that on /pol/ “(((jew)))” is the most 
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similar term (cosθ = 0.80), while on Gab is the 7th most similar term (cos θ = 0.69). The triple 

parentheses is a widely used, antisemitic construction that calls attention to supposed secret Jewish 

involvement and conspiracy *24+. Slurs like “kike,” which is historically associated with general ethnic 

disgust, rank similarly (cos θ = 0.77 on both /pol/ and Gab). This suggests that on both Web 

communities, the term “jew” itself is closely related to classical antisemitic contexts. When digging 

deeper, we note that “goyim” is the 5th and 4th most similar term to “jew,” in /pol/ and Gab, 

respectively. “Goyim” is the plural of “goy,” and while its original meaning is just “non-jews,” 

modern usage tends to have a derogatory nature [27]. On fringe Web communities it is used to 

emphasize the “struggle” against Jewish conspiracy by preemptively assigning Jewish hostility to 

non-Jews as in “The Goyim Know” meme *19+. It is also commonly used in a dismissive manner 

toward community members; a typical attacker will accuse a user he disagrees with of being a “good 

goy,” *15+ a meme implying obedience to a supposed Jewish elite conspiracy. When looking at the 

set of candidate words, given the term “jew,” we find the candidate word “ashkenazi” (most likely 

on /pol/ and 5th most likely on Gab), which refers to a specific subset of the Jewish community. 

Interestingly, we note that the term “jew” exists in the set of most likely words (among the top two 

for both communities) indicating that /pol/ and Gab users abuse the term “jew” by posting 

messages that include the term “jew” multiple times in the same sentence. We also note that this 

has a higher probability of happening on Gab rather than /pol/ (cf. probabilities for candidate word 

“jew” in Table 19). 

To better show the connections between words similar to “jew,” Figure 20 demonstrates the words 

associated with “jew” on /pol/ as a graph, where nodes are words obtained from the word2vec 

model, and the edges are weighted by the cosine distances between the words (obtained from the 

trained word2vec models). We extract the graph by finding the most similar words (cutoff at 0.4 

cosine distance value), and then we take the 2-hop ego network around “jew. In this graph the size 

of a node is proportional to its degree (i.e., the number of other nodes it is directly connected to); 

the color of a node is based on the community it is a member of; and the entire graph is visualized 

using a layout algorithm that takes edge weights into account (i.e., nodes with similar words will be 

closer in the visualization). Note that the cosine distance is the additive inverse of the cosine 

similarity between two words, and we use it to demonstrate the distance between nodes in our 

graph. The graph visualizes the two-hop ego network *1+ from the word “jew,” which includes all the 

nodes that are either directly connected or connected through an intermediate node to the “jew” 

node. We consider two nodes to be connected if their corresponding word vectors have a cosine 

distance that is less or equal to a predefined threshold. To select only the most important 

connections we should select a very small percentage, therefore, we elect to set this threshold to 

0.4, which corresponds to keeping only 0.2% of all possible connections (cosine distances). To 

identify the structure and communities in our graph, we run the community detection heuristic 

presented in [4], and we paint each community with a different color. Finally, the graph is layed out 

with the ForceAtlas2 algorithm [10], which takes into account the weight of the edges when laying 

out the nodes in the 2-dimensional space. 
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Figure 20. Graph representation of the words associated with “jew” on /pol/ 

This visualization reveals the existence of historically salient antisemitic terms, as well as newly 

invented slurs, as the most prominent associations to the word “jew.” We also note communities 

forming distinct themes. Keeping in mind that proximity in the visualization implies contextual 

similarity, we note two close, but distinct communities of words which portray Jews as a morally 

corrupt ethnicity on the one hand (green nodes), and as powerful geopolitical conspirators on the 

other (blue). Notably the blue community connects canards of Jewish political power to anti-Israel 

and anti-Zionist slurs. The three, more distant communities document /pol/’s interest in three 

topics: The obscure details of ethnic Jewish identity (grey), Kabbalistic and cryptic Jewish lore 

(orange), and religious, or theological topics (pink). 

Table 18. Top ten similar words to the term “white” and their respective cosine similarity 

 

We next examine the use of the term “white.” We hypothesize that this term is closely tied to ethnic 

nationalism. To provide insight for how “white” is used on /pol/ and Gab, we use the same analysis 

as described above for the term “jew.” Table 18 shows the top ten similar words to “white” and the 

top ten most likely words to appear in the context of “white.” When looking at the most similar 

terms, we note the existence of “huwhite” (cos θ = 0.78 on /pol/ and cos θ = 0.70 on Gab), a 

pronunciation of “white” popularized by the YouTube videos of white supremacist, Jared Taylor *26]. 

“Huwhite” is a particularly interesting example of how the alt-right adopts certain language, even 

language that is seemingly derogatory towards themselves, in an effort to further their ideological 
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goals. We also note the existence of other terms referring to ethnicity, such the terms “black” (cos θ 

= 0.77 on /pol/ and cos θ = 0.71 on Gab), “whiteeuropean” (cos θ = 0.64 on /pol/), and “caucasian” 

(cos θ = 0.64 on Gab). Interestingly, we again note the presence of the triple parenthesis 

“(((white)))” term on /pol/ (cos θ = 0.75), which refers to Jews who conspire to disguise themselves 

as white. When looking at the most likely candidate words, we find that on /pol/ the term “white” is 

linked with “supremacist,” “supremacy,” and other ethnic nationalism terms.  

The same applies on Gab with greater intensity as the word “supremacist” has a substantially larger 

probability of occurring compared to the probability obtained by the /pol/ model. To provide more 

insight into the contexts and use of “white” on /pol/ we show its most similar terms and their 

nearest associations in Figure 21 (using the same approach as for “jew”). We find seven different 

communities that evidence identity politics alongside themes of racial purity, miscegenation, and 

political correctness. These communities correspond to distinct ethnic and gender themes, like 

Hispanics (green), Blacks (orange), Asians (teal), and women (pink). The central community (grey) 

displays terms relating to whiteness with notable themes of ethnic nationalism. The final two 

communities relate to concerns about race-mixing (turquoise) and a prominent pink cluster that 

intriguingly, references terms related to left-wing political correctness [5], such as microaggression 

and privilege (violet). 

 
Figure 21. Graph representation of the words associated with “white” on /pol/ 
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7.2.3. Meme analysis 

In addition to hateful terms, memes also play a well-documented role in the spread of propaganda 

and ethnic hate in Web communities [29]. To detail how memes spread and how different Web 

communities influence one another with memes, our previous research [29] established a pipeline 

which automatically collects, annotates, and analyzes over 160M memes from over 2.6B posts from 

from Web communities; Reddit, /pol/, Gab, and Twitter. Within Reddit, we pay particular attention 

to The Donald subreddit (The Donald), a Trump supporting subreddit which notoriously propagates 

hateful memes [29] and propaganda [7]. In a nutshell, we use perceptual hashing [23] and clustering 

techniques [6] to track and analyze the propagation of memes across multiple Web communities. To 

achieve this, we rely on images obtained from the Know Your Meme (KYM) site [12], which is a 

comprehensive encyclopedia of memes. 

In this work, we use this pipeline to study how antisemitic memes spread within and between these 

Web communities, and examine which communities are the most influential in their spread. To do 

this, we additionally examine two mainstream Web communities, Twitter and Reddit, and compare 

their influence (with respect to memes) with /pol/ and Gab. Specifically, we focus on the Happy 

Merchant meme [16], which is an especially important hate-meme to study in this regard for several 

reasons. First, it represents an unambiguous instance of antisemitic hate, and second, it is extremely 

popular and diverse in fringe Web communities like /pol/ and Gab [29]. 
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Figure 22. Number of posts that contain images with the Happy Merchant meme on /pol/ and Gab 

First, we aim to assess the popularity and increase of use over time of the Happy Merchant meme on 

/pol/ and Gab. Figure 22 shows the number of posts that contain images with the Happy Merchant 

meme for every day of our /pol/ and Gab dataset. We further note that the numbers here represent 

a lower bound on the number of Happy Merchant postings: our image processing pipeline is 

conservative and only labels clusters that are unambiguously Happy Merchant; variations of other 

memes that incorporate the Happy Merchant are harder to assess. We observe that /pol/ 

consistently shares anti-semitic memes over time, whereas on Gab we note a substantial and 

sudden increase in posts containing Happy Merchant memes immediately after the Charlottesville 

rally. Our findings on Gab dramatically illustrate the implication that real-world eruptions of 

antisemitic behavior can catalyze the acceptability and popularity of antisemitic memes on other 
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Web communities. Taken together, these findings highlight that both communities are exploited by 

users to disseminate racist content that is targeted towards the Jewish community. 

Another important step in examining the Happy Merchant meme is to explore how clusters of 

similar Happy Merchant memes relate to other meme clusters in our dataset. One possibility is that 

Happy Merchants make-up a unique family of memes, which would suggest that they segregate in 

form and shape from other memes. Given that many memes evolve from one another, a second 

possibility is that Happy Merchants “infect” other common memes. This could serve, for instance, to 

make antisemitism more accessible and common. To this end, we visualize in Figure 23 a subset of 

the meme clusters, which we annotate using our KYM dataset, and a Happy Merchant version of 

each meme. This visualization is inspired from [29] and it demonstrates numerous instances of the 

Happy Merchant infecting well-known and popular memes. Some examples include Pepe the Frog 

[17], Roll Safe [18], Bait this is Bait [13], and the Feels Good meme [14]. This suggests that users 

generate antisemitic variants on recognizable and popular memes. 

 
Figure 23. Visualization of a subset of the obtained image clusters with a particular focus on the penetration of the 

Happy Merchant meme to other seemingly neutral memes 

7.2.4. Influence estimation 

While the growth and diversity of the Happy Merchant within fringe Web communities is a cause of 

significant concern, a critical question remains: How do we chart the influence of Web communities 

on one another in spreading the Happy Merchant? We have, until this point, examined the expanse 

of antisemitism on individual, fringe Web communities. Memes however, develop with the purpose 

to replicate and spread between different Web communities. To examine the influence of meme 

spread between Web communities, we employ Hawkes processes [20, 21], which can be exploited 

to measure the predicted, reciprocal influence that various Web communities have to each other. 

We fit Hawkes models for all of our annotated clusters and report the influence in two ways as in 

[29]. First, we report the percentage of events expected to be attributable from a source community 

to a destination community in Table 19. Colors indicate the percent difference between Happy 
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Merchants and non-Happy-Merchants, while ∗ indicate statistical significance between the 

distributions with p < 0.01. In other words, this shows the percentage of memes posted on one 

community which, in the context of our model, are expected to occur in direct response to posts in 

the source community. We can thus interpret this percentage in terms of the relative influence of 

meme postings one network on another. We also report influence in terms of efficacy by 

normalizing the influence that each source community has, relative to the total number of memes 

they post (Table 20). We compare the influence that Web communities exert on one another for the 

Jewish-related Happy Merchant memes (HM) and all other memes (OM) in the graph. To assess the 

statistical significance of the results, we perform two-sample Kolmogorov-Smirnov tests that 

compare the distributions of influence from the Happy Merchant and other memes; an asterisk 

within a cell denotes that the distributions of influence between the source and destination platform 

have statistically significant differences (p < 0.01). 

Our results show that /pol/ is the single most influential community for the spread of memes to all 

other Web communities. Interestingly, the influence that /pol/ exhibits in the spread of the Happy 

Merchant surpasses its influence in the spread of other memes. However, although /pol/’s overall 

influence is higher on these networks, its per-meme efficacy for the spread of antisemitic memes 

tended to be lower relative to non-antisemitic memes with one intriguing exception of The Donald. 

Another interesting feature we observe about this trend is that memes on /pol/ itself show little 

influence from other Web communities; both in terms of memes generally, and non-antisemitic 

memes in particular. This suggests a unidirectional meme flow and influence from /pol/ and 

furthermore, suggest that /pol/ acts as a primary reservoir to incubate and transmit antisemitism to 

downstream Web communities. 

Table 19. Percent of the destination community’s Happy Merchant (HM) and non-Happy-Merchant (OM) meme postings 
caused by the source community 
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Table 20. Influence from source to destination community of Happy Merchant and non-Happy-Merchant meme postings 

 

 

7.3. Materials and Methods 

Datasets 

To study the extent of antisemitism on the Web, we collect two large-scale datasets from /pol/ and 

Gab. In this section, we shall provide a brief overview for the two communities and discuss our 

datasets. Table 21 summarizes the obtained datasets for both Web communities. 

Table 21. Overview of our datasets. We report the number of posts and images from /pol/ and Gab  

 

/pol/. 4chan is an anonymous image board that is usually exploited by troll users. A user can create 

a new thread by creating a post that contains an image. Other users can reply below with or without 

images and possibly add references to previous posts. 4chan is well-known for two features: 

anonymity and ephemerality. The former is the main reason that its users are more aggressive in 

their posts, as there is lack of accountability [3]. The latter is an interesting feature as 4chan threads 

usually get archived quickly (within the same day of their creation) and after one week they are 

permanently deleted. In this work, we focus on the Politically Incorrect board (/pol/) as it exhibits a 

high degree of racism and hate speech *8+ and it is an influential actor on the Web’s information 

ecosystem [30]. To obtain data from /pol/ posts we use the same crawling infrastructure as 

discussed in [8], while for the images we use the methodology discussed in [29]. Specifically, we 

obtain posts and images posted between July 2016 and January 2018, hence acquiring 67M posts 

and 5.8M images. 
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Gab. Gab is a newly created social network, founded in August 2016, that explicitly welcomes 

banned users from other communities (e.g., Twitter). It waves the flag of free speech and it has mild 

moderation; it allows everything except illegal pornography, posts that promote terrorist acts, and 

doxing other users. Gab is inspired by both Twitter and Reddit in its structure. Specifically, a user can 

share 300-character messages with his followers (akin to Twitter), while popularity of posts within 

the platform is dictated via a voting system (akin to Reddit). To obtain data from Gab, we use the 

same methodology as described in [28] and [29] for posts and images, respectively. Overall, we 

obtain 35M posts and 1.1M images posted between August 2016 and January 2018. 

Changepoint Analysis 

To perform the changepoint analysis, we use the PELT algorithm as described in [11], and first 

applied to Gab timeseries data in [28]. We model each timeseries as a set of samples drawn from a 

normal distribution with mean and variance that are free to change at discrete times. We expect 

from the central limit theorem that for networks with large numbers of posts and actors, that this is 

a reasonable model. The algorithm then seeks to determine the points in time at which the mean 

and variance change by maximizing the likelihood of the distribution given the data, subject to a 

penalty to avoid the proliferation of changepoints. We run the algorithm with a decreasing set of 

penalty amplitudes. We keep track of the largest penalty amplitude at which each changepoint first 

appears. This gives us a ranking of the changepoints in order of their “significance.” 

Hawkes Processes 

To assess the root cause of the appearance of Happy Merchant memes on each of the communities, 

we leverage a stochastic model known as a Hawkes Process. Generally, a Hawkes model consists of K 

processes, where a process is a sequence of events that happen with a particular probability 

distribution. Colloquially, a process is analogous to a specific Web community where memes (i.e., 

events) are posted. Each process has a rate of events, which defines expected frequency of events 

on a specific Web community (for example, five posts with Happy Merchant memes per hour). An 

event on one process can cause impulses on other processes, which increase their rates for a period 

of time. An impulse is defined by a weight and a probability distribution. The former dictates the 

intensity of the impulse (i.e., how strong is the increase in the rate of a process), while the latter 

dictates how the effect of the impulse changes over time (typically it decays as time goes on). For 

instance, a weight of 1.5 from process A to B, means that each event on A will cause, on average, an 

additional 1.5 events on B. 

In this work, we use a separate Hawkes model for each cluster of images that we obtained when 

applying the pipeline reported in [29]. Each model consists of five processes; one for each of /pol/, 

The Donald, the rest of Reddit, Gab, and Twitter. We elected to separate The Donald from the rest of 

Reddit, as it is an influential actor with respect to the dissemination of memes [29]. Next, we fit each 

model using Gibbs sampling as reported in [20, 21], as well as our previous research [29]. This 

technique enables us to obtain, at a given time, the weights and probability distributions for each 

impulse that is active, hence allowing us to be confident that an event is caused because of a 

previously occurred event on the same or on another process. 
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Due to the aforementioned, we argue that Hawkes Processes are a suitable framework for assessing 

the causal relationships between events; hence we make use of them in this work in order to 

quantify and understand the influence that Web communities have on each other with respect to 

the antisemitic Happy Merchant meme. 

7.4. Discussion and Conclusion 

Antisemitsm has been a historical harbinger of ethnic strife [2, 9]. While organizations have been 

tackling antisemitism and its associated societal issues for decades, the rise and ubiquitous nature of 

the Web has raised new concerns. Antisemitism and hate have grown and proliferated rapidly online 

and have done so mostly unchecked. This is due, in large part, to the scale and speed of the online 

world, and calls for new techniques to better understand and combat this worrying behavior. 

In this work, we take the first step towards establishing a large-scale, scientifically grounded, 

quantitative understanding of antisemitism online. We analyze over 100M posts from July, 2016 to 

January, 2018 from two of the largest fringe communities on the Web: 4chan’s Politically Incorrect 

board (/pol/) and Gab (a Twitter-esque service). We find evidence of increasing antisemitism and the 

use of racially charged language, in large part correlating with real-world political events like the 

2016 US Presidential Election. We then analyze the context this language is used in via word2vec and 

discover several distinct facets of antisemitic language, ranging from slurs to conspiracy theories 

grounded in biblical literature. Finally, we examine the prevalence and propagation of the 

antisemitic “Happy Merchant” meme, finding that 4chan’s /pol/ and Reddit’s The_Donald are the 

most influential and efficient, respectively, in spreading this antisemitic meme across the Web. 

We are certainly not the first to study antisemitism online. However, our approach differs 

substantially from the one traditionally taken by organizations like the Anti-Defamation League in 

several important ways. First, we eschew the use of surveys and qualitative analysis in favor of large-

scale, data-driven, reproducible measurement. Second, our work builds upon the scientific literature 

resulting in well understood and open methodology. Third, the toolkit we present provides a clear 

direction for building automated, scalable, real-time systems to track and understand antisemitism 

and how it evolves over time. 

That said, our work is not without limitations. First, most of our results should be considered a lower 

bound on the use of antisemitic language and imagery. In particular, we note that our quantification 

of the use of the “Happy Merchant” meme is extremely conservative. The meme processing pipeline 

we use is tuned in such a way that many Happy Merchant variants are clustered along with their 

“parent” meme. Second, our quantification of the growth antisemitic language is focused on two 

particular keywords, although we also show how new rhetoric is discoverable. Third, we focus 

primarily on two specific fringe communities. As a new community, Gab in particular is still rapidly 

evolving, and so treating it as a stable community (e.g., Hawkes processes), may cause us to 

underestimate its influence. 

Regardless, there are several important recommendations we can draw from our results. First, 

organizations such as the ADL and SPLC should refocus their efforts towards open, data-driven 

methods. Small-scale, qualitative understanding is still incredibly important, especially with regard to 
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understanding offline behavior. However, resources must be devoted to scientifically valid large-

scale data analysis. More importantly, there is a need for greater transparency both in data (and its 

collection process) and the methods used for analysis. The scale of the problem of online hate has 

surpassed the ability of a single organization to solve on its own. Instead, we argue that traditional 

anti-hate organizations should form more intimate relationships with scientists, not just allowing, 

but encouraging peer-reviewed and open contributions to the scientific literature, in addition to 

their traditional modus operandi of public education. 

Second, we believe that regardless of the participation of anti-hate organizations–scientists, and 

particularly computer scientists, must expend effort at understanding, measuring, and combating 

online antisemitism and online hate in general. The Web has changed the world in ways that were 

unimaginable even ten years ago. The world has shrunk, and the Information Age is in full effect. 

Unfortunately, many of the innovations that make the world what it is today were created with little 

thought to their negative consequences. For a long time, technology innovators have not considered 

potential negative impacts of the services they create, in some ways abdicating their responsibility 

to society. The present work provides solid quantified evidence that the technology that has had 

incredibly positive results for society is being co-opted by actors that have harnessed it in worrying 

ways, using the same concepts of scale, speed, and network effects to greatly expand their influence 

and effects on the rest of the Web and the world at large. 
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8. On the Origins of Memes by Means of Fringe Web Communities 

8.1. Project description and motivation 

Internet memes are increasingly used to sway and manipulate public opinion, thus prompting the 

need to study their propagation, evolution, and influence across the Web. In this paper, we detect 

and measure the propagation of memes across multiple Web communities, using a processing 

pipeline based on perceptual hashing and clustering techniques, and a dataset of 160M images from 

2.6B posts gathered from Twitter, Reddit, 4chan’s Politically Incorrect board (/pol/), and Gab over 

the course of 13 months. We group the images posted on fringe Web communities (/pol/, Gab, and 

The_Donald subreddit) into clusters, annotate them using meme metadata obtained from Know 

Your Meme, and also map images from mainstream communities (Twitter and Reddit) to the 

clusters. 

Our analysis provides an assessment of the popularity and diversity of memes in the context of each 

community, showing, e.g., that racist memes are extremely common in fringe Web communities. We 

also find a substantial number of politics-related memes on both mainstream and fringe Web 

communities, supporting media reports that memes might be used to enhance or harm politicians. 

Finally, we use Hawkes processes to model the interplay between Web communities and quantify 

their reciprocal influence, finding that /pol/ substantially influences the meme ecosystem with the 

number of memes it produces, while The_Donald has a higher success rate in pushing them to other 

communities. 

8.2. Methodology 

8.2.1. Overview 

Memes are high-level concepts or ideas that spread within a culture *5+. In Internet vernacular, a 

meme usually refers to variants of a particular image, video, clich , etc. that share a common theme 

and are disseminated by a large number of users. In this work, we focus on their most common 

incarnation: static images. 

To gain an understanding of how memes propagate across the Web, with a particular focus on 

discovering the communities that are most influential in spreading them, our intuition is to build 

clusters of visually similar images, allowing us to track variants of a meme. We then group clusters 

that belong to the same meme to study and track the meme itself. In Figure 24, we provide a visual 

representation of the Smug Frog meme [27], which includes many variants of the same image and 

several clusters of variants. Cluster 1 has variants from a Jurassic Park scene, where one of the 

characters is hiding from two velociraptors behind a kitchen counter: the frogs are stylized to look 

similar to velociraptors, and the character hiding varies to express a particular message. For 

example, in the image in the top right corner, the two frogs are searching for an anti-semitic 
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caricature of a Jew. Cluster N shows variants of the smug frog wearing a Nazi officer military cap 

with the infamous “Arbeit macht frei” in the background. Overall, these clusters represent the 

branching nature of memes: as a new variant of a meme becomes prevalent, it often branches into 

its own sub-meme, potentially incorporating imagery from other memes. 

 

 
Figure 24. An example of a meme (Smug Frog) that provides an intuition of what an image, a cluster, and a meme is 

We now introduce our processing pipeline, which is present in Figure 25. Our methodology aims at 

identifying clusters of similar images and assign them to higher level groups, which are the actual 

memes. Note that the proposed pipeline is not limited to image macros and can be used to identify 

any image. We first discuss the types of data sources needed for our approach, i.e., meme 

annotation sites and Web communities that post memes (dotted rounded rectangles in the Figure). 

Then, we describe each of the operations performed by our pipeline (Steps 1-7, see regular 

rectangles). 
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Figure 25. High-level overview of our processing pipeline 

Data Sources. Our pipeline uses two types of data sources: i) sites providing meme annotation and 

ii) Web communities that disseminate memes. In this paper, we use Know Your Meme for the 

former, and Twitter, Reddit, /pol/, and Gab for the latter. However, our methodology supports any 

annotation site and any Web community, and this is why we add the “Generic” sites/communities 

notation in Figure 10. 

Step 1: pHash Extraction: We use the Perceptual Hashing (pHash) algorithm [34] to calculate a 

fingerprint of each image in such a way that any two images that look similar to the human eye map 

to a “similar” hash value. pHash generates a feature vector of 64 elements that describe an image, 

computed from the Discrete Cosine Transform among the different frequency domains of the image. 

Thus, visually similar images have minor differences in their vectors. For example, the string 

representation of the phases obtained from the images in cluster N (see Figure 9) are 

55352b0b8d8b5b53, 55952b0bb58b5353, and 55952b2b9da58a53, respectively. The algorithm is 

also robust against changes in the images, e.g., signal processing operations and direct manipulation 

[39], and effectively reduces the dimensionality of the raw images. 

Steps 2 & 3 - Clustering via pairwise distance calculation: Next, we cluster images from one or more 

Web Communities using the pHash values. We perform a pairwise comparison of all the pHashes 

using Hamming distance (Step 2). To support large numbers of images, we implement a highly 

parallelizable system on top of TensorFlow [4], which uses multiple GPUs to enhance performance. 

Images are clustered using a density-based algorithm (Step 3). Our current implementation uses 

DBSCAN [6], mainly because it can discover clusters of arbitrary shape and performs well over large, 

noisy datasets. Nonetheless, our architecture can be easily tweaked to support any clustering 

algorithm and distance metric. 
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Step 4 - Screenshots Removal: Meme annotation sites like KYM often include, in their image 

galleries, screenshots of social network posts that are not variants of a meme but just comments 

about it. Hence, we discard social-network screenshots from the annotation sites data sources using 

a deep learning classifier.  

Step 5 - Cluster Annotation: Clustering annotation uses the medoid of each cluster, i.e., the element 

with the minimum square average distance from all images in the cluster. In other words, the 

medoid is the image that best represents the cluster. The clusters’ medoids are compared with all 

images from meme annotation sites, by calculating the Hamming distance between each pair of 

pHash vectors. We consider that an image matches a cluster if the distance is less than or equal to a 

threshold us to capture the diversity of images that are part of the same meme while maintaining a 

low number of false positives. As the annotation process considers all the images of a KYM entry’s 

image gallery, it is likely we will get multiple annotations for a single cluster. To find the 

representative KYM entry for each cluster, we select the one with the largest proportion of matches 

of KYM images with the cluster medoid. In case of ties, we select the one with the minimum average 

Hamming distance. As KYM is based on community contributions it is unclear how good our 

annotations are. To evaluate KYM entries and our cluster annotations, three authors of this paper 

assessed 200 annotated clusters and 162 KYM entries. We find that only a 1.85% of the assessed 

KYM entries were regarded as “bad” or not sufficient. When it comes to the clustering annotation, 

we note that the three annotators had substantial agreement (Fleis agreement score equal to 0.67) 

and that the clustering accuracy, after majority agreement, of the assessed clusters is 89%. 

Step 6 - Association of images to memes: To associate images posted on Web communities (e.g., 

Twitter, Reddit, etc.) to memes, we compare them with the clusters’ medoids, using the same 

threshold. This is conceptually similar to Step 5 but uses images from Web communities instead of 

images from annotation sites. This lets us identify memes posted in generic Web communities and 

collect relevant metadata from the posts (e.g., the timestamp of a tweet). Note that we track the 

propagation of memes in generic Web communities (e.g., Twitter) using a seed of memes obtained 

by clustering images from other (fringe) Web communities. More specifically, our seeds will be 

memes generated on three fringe Web communities (/pol/, The_Donald subreddit, Gab); 

nonetheless, our methodology can be applied to any community. 

Step 7 - Analysis and Influence Estimation: We analyze all relevant clusters and the occurrences of 

memes, aiming to assess: 1) their popularity and diversity in each community; 2) their temporal 

evolution; 3) how communities influence each other with respect to meme dissemination. 

8.3. Datasets 

8.3.1. Web Communities 

As mentioned earlier, our data sources are Web communities that post memes and meme 

annotation sites. For the former, we focus on four communities: Twitter, Reddit, Gab, and 4chan 

(more precisely, 4chan’s Politically Incorrect board, /pol/). This provides a mix of mainstream social 

networks (Twitter and Reddit) as well as fringe communities that are often associated with the alt-

right and have an impact on the information ecosystem (Gab and /pol/) [38]. 
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There are several other platforms playing important roles in spreading memes, however, many are 

“closed” (e.g., Facebook) or do not involve memes based on static images (e.g., YouTube, Giphy). In 

future work, we plan to extend our measurements to communities like Instagram and Tumblr, as 

well as to GIF and video memes. Nonetheless, we believe our data sources already allow us to elicit 

comprehensive insights into the meme ecosystem. 

Table 22 reports the number of posts and images processed for each community. Note that the 

number of images is lower than the number of posts with images because of duplicate image URLs 

and because some images get deleted. Next, we discuss each dataset. 

Table 22. Overview of our datasets 

 

Twitter. Twitter is a mainstream microblogging platform, allowing users to broadcast 280-character 

messages (tweets) to their followers. Our Twitter dataset is based on tweets made available via the 

1% Streaming API, between July 1, 2016 and July 31, 2017. In total, we parse 1.4B tweets: 242M of 

them have at least one image. We extract all the images, ultimately collecting 114M images yielding 

74M unique pHashes. 

Reddit. Reddit is a news aggregator: users create submissions by posting a URL and others can reply 

in a structured way. It is divided into multiple sub-communities called subreddits, each with its own 

topic and moderation policy. Content popularity and ranking are determined via a voting system 

based on the up- and down-votes users cast. We gather images from Reddit using publicly available 

data from Pushshift [35]. We parse all submissions and comments1 between July 1, 2016 and July, 

31 2017, and extract 62M posts that contain at least one image. We then download 40M images 

producing 30M unique pHashes. 

4chan. 4chan is an anonymous image board; users create new threads by posting an image with 

some text, which others can reply to. It has two characteristic features: anonymity and 

ephemerality. By default, user identities are concealed, and all threads are deleted after one week. 

Overall, 4chan is known for its extremely lax moderation and the high degree of hate and racism, 

especially on boards like /pol/ [8]. We obtain all threads posted on /pol/, between July 1, 2016 and 

July 31, 2017, using the same methodology of [8]. Since all threads (and images) are removed after a 

week, we use a public archive service called 4plebs [3] to collect 4.3M images, thus yielding 3.6M 

unique pHashes. 
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Gab. Gab is a social network launched in August 2016 as a “champion” of free speech, providing 

“shelter” to users banned from other platforms. It combines social networking features from Twitter 

(broadcast of 300-character messages) and Reddit (content is ranked according to up- and down-

votes). It also has extremely lax moderation as it allows everything except illegal pornography, 

terrorist propaganda, and doxing [36]. Overall, Gab attracts alt-right users, conspiracy theorists, and 

trolls, and high volumes of hate speech [37]. We collect 12M posts, posted on Gab between August 

10, 2016 and July 31, 2017, and 955K posts have at least one image, using the same methodology as 

in [37]. Out of these, 235K images are unique, producing 193K unique pHashes. 

8.3.2. Meme Annotation Site 

Know Your Meme (KYM). We choose KYM as the source for meme annotation as it offers a 

comprehensive database of memes. KYM is a sort of encyclopedia of Internet memes: for each 

meme, it provides information such as its origin (i.e., the platform on which it was first observed), 

the year it started, as well as descriptions and examples. In addition, for each entry, KYM provides a 

set of keywords, called tags that describe the entry. KYM provides a variety of higher-level categories 

that group meme entries; namely, cultures, subcultures, people, events, and sites. “Cultures” and 

“sub-cultures” entries refer to a wide variety of topics ranging from video games to various general 

categories. For example, the Rage Comics subculture [24] is a higher-level category associated with 

memes related to comics like Rage Guy [25] or LOL Guy [18], while the Alt-right culture [9] gathers 

entries from a loosely defined segment of the right-wing community. The rest of the categories refer 

to specific individuals (e.g., Donald Trump [14]), specific events (e.g., #CNNBlackmail [13]), and sites 

(e.g., /pol/ [23]), respectively. It is also worth noting that KYM moderates all entries, hence entries 

that are wrong or incomplete are marked as so by the site. 

As of May 2018, the site has 18.3K entries, specifically, 14K memes, 1.3K subcultures, 1.2K people, 

1.3K events, and 427 websites [19]. We crawl KYM between October and December 2017, acquiring 

data for 15.6K entries; for each entry, we also download all the images related to it by crawling all 

the pages of the image gallery. In total, we collect 707K images corresponding to 597K unique 

pHashes. Note that we obtain 15.6K out of 18.3K entries, as we crawled the site several months 

before May 2018. 

8.3.3. Running the pipeline in our datasets 

For all four Web communities (Twitter, Reddit, /pol/, and Gab), we perform Step 1 of the pipeline, 

using the ImageHash library [2]. We then perform Steps 2-3 (i.e., pairwise comparisons between all 

images and clustering), for all the images from /pol/, The_Donald subreddit, and Gab, as we treat 

them as fringe Web communities. Note that, we exclude mainstream communities like the rest of 

Reddit and Twitter as our main goal is to obtain clusters of memes from fringe Web communities 

and later characterize all communities by means of the clusters. Next, we go through Steps 4-5 using 

all the images obtained from meme annotation websites (specifically, Know Your Meme) and the 

medoid of each cluster from /pol/, The_Donald, and Gab. Finally, Steps 6-7 use all the pHashes 

obtained from Twitter, Reddit (all subreddits), /pol/, and Gab to find posts with images matching the 

annotated clusters. This is an integral part of our process as it allows to characterize, and study 

mainstream Web communities not used for clustering (i.e., Twitter and Reddit). 
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8.4. Analysis 

8.4.1. Cluster-based analysis 

Statistics. In Table 23, we report some basic statistics of the clusters obtained for each Web 

community. A relatively high percentage of images (63%–69%) are not clustered, i.e., are labeled as 

noise. While in DBSCAN “noise” is just an instance that does not fit in any cluster (more specifically, 

there are less than 5 images with perceptual distance <= 8 from that particular instance), we note 

that this likely happens as these images are not memes, but rather “one-off images.” For example, 

on /pol/ there is a large number of pictures of random people taken from various social media 

platforms. 

Overall, we have 2.1M images in 63.9K clusters: 38K clusters for /pol/, 21K for The_Donald, and 3K 

for Gab. 12.6K of these clusters are successfully annotated using the KYM data: 9.2K from /pol/ 

(142K images), 2.9K from The_Donald (121K images), and 447 from Gab (4.5K images). As for the un-

annotated clusters, manual inspection confirms that many include miscellaneous images unrelated 

to memes, e.g., similar screenshots of social networks posts (recall that we only filter out 

screenshots from the KYM image galleries), images captured from video games, etc. 

Table 23. Statistics obtained from clustering images from /pol/, The_Donald, and Gab 

 

Top KYM entries. Because the majority of clusters match only one or two KYM entries, we simplify 

things by giving all clusters a representative annotation based on the most prevalent annotation 

given to the medoid, and, in the case of ties the average distance between all matches. Thus, in the 

rest of this report, we report our findings based on the representative annotation for each cluster. 

In Table 24, we report the top 20 KYM entries with respect to the number of clusters they annotate. 

These cover 17%, 23%, and 27% of the clusters in /pol/, The_Donald, and Gab, respectively, hence 

covering a relatively good sample of our datasets. Donald Trump [14], Smug Frog [27], and Pepe the 

Frog [22] appear in the top 20 for all three communities, while the Happy Merchant [17] only in 

/pol/ and Gab. In particular, Donald Trump annotates the most clusters (207 in /pol/, 177 in 

The_Donald, and 25 in Gab). In fact, politics-related entries appear several times in the Table, e.g., 

Make America Great Again [20] as well as political personalities like Bernie Sanders, Obama, Putin, 

and Hillary Clinton. 
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Table 24. Top 20 KYM entries appearing in the clusters of /pol/, The_Donald, and Gab 

 

When comparing the different communities, we observe the most prevalent categories are memes 

(6 to 14 entries in each community) and people (2-5). Moreover, in /pol/, the 2nd most popular 

entry, related to people, is Adolf Hilter, which supports previous reports of the community’s 

sympathetic views toward Nazi ideology [8]. Overall, there are several memes with hateful or 

disturbing content (e.g., holocaust). This happens to a lesser extent in The_Donald and Gab: the 

most popular people after Donald Trump are contemporary politicians. 

Finally, image posting behavior in fringe Web communities is greatly influenced by real-world 

events. For instance, in /pol/, we find the #TrumpAnime controversy event [29], where a political 

individual (Rick Wilson) offended the alt-right community, Donald Trump supporters, and anime fans 

(an oddly intersecting set of interests of /pol/ users). Similarly, on The_Donald and Gab, we find the 

#Cnnblackmail [13] event, referring to the (alleged) blackmail of the Reddit user that created the 

infamous video of Donald Trump wrestling the CNN. 

Meme Visualization. We also visualize the clusters with annotations (see Figure 26). We build a 

graph G = (V , E), where V are the medoids of annotated clusters and E the connections between 

medoids with distance under a threshold. In particular, we select this threshold as the majority of 

the clusters from the same meme are hierarchically connected with a higher-level cluster at a 

distance close to 0.45. To ease readability, we filter out nodes and edges that have a sum of in-and 
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out-degree less than 10, which leaves 40% of the nodes and 92% of the edges. Nodes are colored 

according to their KYM annotation. NB: the graph is laid out using the OpenOrd algorithm [33] and 

the distance between the components in it does not exactly match the actual distance metric. We 

observe a large set of disconnected components, with each component containing nodes of 

primarily one color. This indicates that our distance metric is indeed capturing the peculiarities of 

different memes. Finally, note that an interactive version of the full graph is publicly available from 

[1]. 

 
Figure 26. Visualization of the obtained clusters from /pol/, The_Donald, and Gab 

8.4.2. Web Community-based analysis 

We now present a macro-perspective analysis of the Web communities through the lens of memes. 

We assess the presence of different memes in each community, how popular they are, and how they 

evolve. To this end, we examine the posts from all four communities (Twitter, Reddit, /pol/, and 

Gab) that contain images matching memes from fringe Web communities (/pol/, The_Donald, and 

Gab). 

Meme Popularity. We start by analyzing clusters grouped by KYM ‘meme’ entries, looking at the 

number of posts for each meme in /pol/, Reddit, Gab, and Twitter.  

In Table 25, we report the top 20 memes for each Web community sorted by the number of posts. 

We observe that Pepe the Frog [22] and its variants are among the most popular memes for every 

platform. While this might be an artifact of using fringe communities as a “seed” for the clustering, 

recall that the goal of this work is in fact to gain an understanding of how fringe communities 

disseminate memes and influence mainstream ones. Thus, we leave to future work a broader 

analysis of the wider meme ecosystem. 
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Table 25. Top 20 KYM entries for memes that we find in our datasets 

 

Sad Frog [16] is the most popular meme on /pol/ (4.9%), the 3rd on Reddit (1.3%), the 10th on Gab 

(0.8%), and the 12th on Twitter (0.5%). We also find variations like Smug Frog [27], Apu Apustaja 

[11], Pepe the Frog [22], and Angry Pepe [10]. Considering that Pepe is treated as a hate symbol by 

the Anti-Defamation League [30] and that is often used in hateful or racist, this likely indicates that 

polarized communities like /pol/ and Gab do use memes to incite hateful conversation. This is also 

evident from the popularity of the anti-semitic Happy Merchant meme [17], which depicts a 

“greedy” and “manipulative” stereotypical caricature of a Jew (3.8% on /pol/ and 1.1% on Gab). 

By contrast, mainstream communities like Reddit and Twitter primarily share harmless/neutral 

memes, which are rarely used in hateful contexts. Specifically, on Reddit the top memes are 

Manning Face [21] (2.2%) and That’s the Joke *28+ (1.3%), while on Twitter the top ones are Roll Safe 

[26] (5.9%) and Evil Kermit [15] (5.4%). 

Once again, we find that users (in all communities) post memes to share politics-related information, 

possibly aiming to enhance or penalize the public image of politicians. For instance, we find Make 

America Great Again *20+, a meme dedicated to Donald Trump’s US presidential campaign, among 

the top memes in /pol/ (1.6%), in Reddit (0.8%), and Gab (0.8%). Similarly, in Twitter, we find the 

Clinton Trump Duet meme [12] (0.4%), a meme inspired by the 2nd US presidential debate. 
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We further group memes into two high-level groups, racist and politics-related. We use the tags that 

are available in our KYM dataset, i.e., we assign a meme to the politics-related group if it has the 

“politics,” “2016 us presidential election,” “presidential election,” “trump,” or “clinton” tags, and to 

the racism-related one if the tags include “racism,” “racist,” or “antisemitism,” obtaining 117 racist 

memes(4.4% of all memes that appear on our dataset) and 556 politics-related memes (21.2% of all 

memes that appear on our dataset). In the rest of this report we use these groups for our analysis. 

Temporal Analysis. Next, we study the temporal aspects of posts that contain memes from /pol/, 

Reddit, Twitter, and Gab. In Figure 27, we plot the percentage of posts per day that include memes. 

For all memes, we observe that /pol/ and Reddit follow a steady posting behavior, with a peak in 

activity around the 2016 US elections. We also find that memes are increasingly more used on Gab 

(see, e.g., 2016 vs 2017). 

Both /pol/ and Gab include a substantially higher number of posts with racist memes, used over time 

with a difference in behavior: while /pol/ users share them in a very steady and constant way, Gab 

exhibits a bursty behavior. A possible explanation is that the former is inherently more racist, with 

the latter primarily reacting to particular world events. As for political memes, we find a lot of 

activity overall on Twitter, Reddit, and /pol/, but with different spikes in time. On Reddit and /pol/, 

the peaks coincide with the 2016 US elections. On Twitter, we note a peak that coincides with the 

2nd US Presidential Debate on October 2016. For Gab, there is again an increase in posts with 

political memes after January 2017. 

 
Figure 27. Percentage of posts per day in our dataset for all, racist, and politics-related memes 
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8.5. Influence Estimation 

We fit Hawkes models using Gibbs sampling as described in [32] for the 12.6K annotated clusters; in 

Table 26, we report the total number of meme images posted to each community in these clusters. 

We note that /pol/ has the greatest number of memes posted, followed by Twitter and Reddit. 

Recall, however, that because our approach is seeded with memes observed on /pol/, The_Donald, 

and Gab, it is possible that there are memes on Twitter and Reddit that are not included in the 

clusters. In addition, the raw number of images (not necessarily memes) that appear on the different 

communities varies greatly. This yields an additional interesting question: how efficient are different 

communities at disseminating memes? 

Table 26. Events per community from the 12.6K clusters 

 

First, we report the source of events in terms of the percent of events on the destination 

community. This describes the results in terms of the data as we have collected it, e.g., it tells us the 

percentage of memes posted on Twitter that were caused by /pol/. The second way we report 

influence is by normalizing the values by the total number of events in the source community, which 

lets us see how much influence each community has, relative to the number of memes they post—in 

other words, their efficiency.  

Using the clusters identified as either racist or non-racist, we compare how the communities 

influence the spread of these two types of content. Table 27 shows the percentage of both the 

destination community’s racist and non-racist meme posts caused by the source community. Colors 

indicate the percent difference between racist and non-racist. We perform two-sample Kolmogorov-

Smirnov tests to compare the distributions of influence from the racist and non-racist clusters; cells 

with statistically significant differences between influence of racist/non-racist memes (with p<0.01) 

are reported with a * in the Table 28. /pol/ has the most total influence for both racist and non-

racist memes, with the notable exception of Twitter, where Reddit has the most the influence. 

Interestingly, while the percentage of racist meme posts caused by /pol/ is greater than non-racist 

for Reddit, Twitter, and Gab, this is not the case for The_Donald. The only other cases where 

influence is greater for racist memes are Reddit to The_Donald and Gab to Reddit. 



 

 

Deliverable D4.2 “Software libraries built on Graphos.ml using data 

mining for the detection of aggressive or distressed behaviors in OSN”  

 

71 
 

Table 27. Percent of the destination community’s racist (R) and non-racist (NR) meme postings caused by the source 
community 

 

 

Table 28. Percent of the destination community’s political (P) and non-political (NP) meme postings caused by the 
source community 

 

 

When looking at political vs non-political memes (Table 29), we see a somewhat different story. 

Here, /pol/ influences The_Donald more in terms of political memes. Further, we see differences in 

the percent increase and decrease of influence between the Table 29 and Table 30 (as indicated by 

the cell colors). For example, Twitter has a relatively larger difference in its influence on /pol/ and 

Reddit for political and non-political memes than for racist and non-racist memes, but a smaller 

difference in its influence on Gab and The_Donald. This exposes how different communities have 

varying levels of influence depending on the type of memes they post. 
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Table 29. Influence from source to destination community of racist and non-racist meme postings, normalized by the 
number of events in the source community 

 

Table 30. Influence from source to destination community of political and non-political meme postings, normalized by 
the number of events in the source community 

 
While examining the raw influence provides insights into the meme ecosystem, it obscures notable 

differences in the meme posting behavior of the different communities. To explore this, we look at 

the normalized influence in Tables 29 (racist/non-racist memes) and 30 (political/non-political 

memes). As mentioned previously, normalization reveals how efficient the communities are in 

disseminating memes to other communities by revealing the per meme influence of meme posts. 

First, we note that the percent change in influence for the dissemination of racist/non-racist memes 

is quite a bit larger than that for political/non-political memes (again, indicated by the coloring of the 

cells). More interestingly, both Figures show that, contrary to the total influence, /pol/ is the least 

influential when taking into account the number of memes posted. While this might seem surprising, 

it actually yields a subtle, yet crucial aspect of /pol/’s role in the meme ecosystem: /pol/ (and 4chan 

in general) acts as an evolutionary microcosm for memes. The constant production of new content 

*8+ results in a “survival of the fittest” *7+ scenario. A staggering number of memes are posted on 

/pol/, but only the best actually makes it out to other communities. To the best of our knowledge, 

this is the first result quantifying this analogy to evolutionary pressure. 
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8.6. Conclusion 

In this work, we presented a large-scale measurement study of the meme ecosystem. We introduced 

a novel image processing pipeline and ran it over 160M images collected from four Web 

communities (4chan’s /pol/, Reddit, Twitter, and Gab). We clustered images from fringe 

communities (/pol/, Gab, and Reddit’s The_Donald) based on perceptual hashing and a custom 

distance metric, annotated the clusters using data gathered from Know Your Meme, and analyzed 

them along a variety of axes. We then associated images from all the communities to the clusters to 

characterize them through the lens of memes and the influence they have on each other. 

Our analysis highlights that the meme ecosystem is quite complex, with intricate relationships 

between different memes and their variants. We found important differences between the memes 

posted on different communities (e.g., Reddit and Twitter tend to post “fun” memes, while Gab and 

/pol/ racist or political ones). When measuring the influence of each community toward 

disseminating memes to other Web communities, we found that /pol/ has the largest overall 

influence for racist and political memes, however, /pol/ was the least efficient, i.e., in terms of 

influence w.r.t. the total number of memes posted, while The_Donald is very successful in pushing 

memes to both fringe and mainstream Web communities. 

Our work constitutes the first attempt to provide a multi-platform measurement of the meme 

ecosystem, with a focus on fringe and potentially dangerous communities. Considering the 

increasing relevance of digital information on world events, our study provides a building block for 

future cultural anthropology work, as well as for building systems to protect against the 

dissemination of harmful ideologies. Moreover, our pipeline can already be used by social network 

providers to assist the identification of hateful content; for instance, Facebook is taking steps to ban 

Pepe the Frog used in the context of hate [31], and our methodology can help them automatically 

identify hateful variants. Finally, our pipeline can be used for tracking the propagation of images 

from any context or other language spheres, provided an appropriate annotation dataset. 
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9. Summary and Future Work 

In this document we provided details about the ongoing work related to the development of 
automated techniques to detect early cyberbullying patterns through emotional analysis, online 
abuse, online antisemitism detection and how hateful memes originating from fringe communities 
reach and affect mainstream online social networks. 

Most of the above mentioned work is deployed in the ENCASE Framework. The efforts listed in this 
document helped the project reach a big milestone with regards to identifying online abuse and how 
to protect minors from it. The ENCASE Framework, equipped with the aforementioned techniques 
will be tested and be piloted during WP7. 

All the projects above have made significant steps towards automatically detecting malicious 
behavior and the project reached a very important milestone with this document. 
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