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Abstract: Vehicles, as a prime example of high-tech systems, get increasingly connected and 
data-centric with the need to process personally identifiable information. Often, 
companies that develop such systems act as integrators and need to comply to 
adequate data protection requirements. For instance, GDPR requires securing 
personal data. Yet, testing security of data (including, but not limited to personal data) 
is challenging. Penetration testing often starts from the outside of the system and take 
place at the end of the development lifecycle. This may be insufficient to adequately 
test for potential errors hidden within system boundaries. Having methods to design, 
execute, and reuse (automated) security test cases on a ‘white-box’ system is desirable. 
This positioning paper proposes an approach to design tool-based security test 
sequences. We structurally approach high-level data storing, processing, and 
communicating functionality in connection to the system boundary. We suggest to 
use pen-testing tools and sequences for testing the functionality of the vehicle’s 
(sub)system, before test-enabling interfaces are removed. This paper intends to 
contribute to discussions how to test layered defense implementations. The proposed 
approach is undergoing extensions and validations.  

1 INTRODUCTION 

Automotive companies develop their high-tech 

systems (HTS) by acting as integrators who 

combine components provided by suppliers. 

Improper re-use, misconfiguration, or non-

compliant components can lead to undesired 

functionality and, therefore, system vulnerabilities.  

Testing security as an integral non-functional 

system quality is an complex task. It commonly 

involves simulating attacks and employing other 

kinds of penetration testing where testers play the 

role of a hacker trying to attack the system 

(vehicle) and exploit its vulnerabilities (Felderer et 

al., 2015). This approach serves its purpose, but is 

commonly used at late development stages and 

often such tests start from the outside of the system. 

As a result, potential errors and vulnerabilities 

within the system boundary can stay hidden after 

product release. 

Modern-day solutions are often designed with 

the defence-in-depth concept in mind, where 

multiple layers of security are placed through a 

system. Yet, the question remains how to test these 

inner security measures properly, easily, and 

securely, without introducing extra weak spots.   

Arguably, automated test cases conducted on a 

‘white-box’ system during system integration can 

assist in providing the proper support and 

reasoning for security and privacy compliance 

claims towards the authorities. Test interfaces can 

provide access to inner components of the vehicle. 

Clearly, these interfaces are expected to be fully 

removed before releasing the system.  

 



 

Figure 1. The flow of the analysis 

 

To approach white-box testing, automotive, 

similar to other high-tech domains, can borrow ICT 

concepts. In particular, data handling can be 

approached as data storing, processing, and 

communicating functions. For instance, an attacker 

needs to bypass the communication, processing, 

and storage functionality to access the GPS history 

before being able to retrieve the data.  

Figure 1 shows an analogy how elements of the 

data handling functionality triad can be related to 

each other through the idea of Dutch river dikes. 

The water represents the environment external to 

man-made structures. Next to the river is the first 

protection layer, called the summer dike. Once the 

summer dike is compromised, the river water can 

overflow in the retention base, where the water has 

room to flow, and strong waves and changes are 

diminished. The retention base is again surrounded 

by a second protection layer, the winter dike. As it 

can also be breached, the most valuable houses or 

villages are built on a higher hill, called the Terp, 

to provide the last layer of defense.  

Similarly, a data asset is typically located 

behind several perimeters. Communicating 

functionality is located on the system boundary 

prior to Processing, which in turn precedes Storing. 

If an intruder gets into a  system, their actions shall 

be dampened out, another defense layer should 

exist before the more critical parts of the system, 

and if that layer is breached, valuable assets need 

to have yet another defense layer (e.g. extra 

encryption or access control). Thus, it might take 

separate steps to access Storing. To ensure data 

containment (e.g., personal data or algorithms), 

these steps should also tested.   

This high-level functionality triad can be 

implemented by different in-vehicle (sub)systems 

with different components depending on the data in 

focus. Communicating functionality can be mainly 

included in Gateway or Telematics unit. Yet, while 

those ECUs can include their own storage and 

communicating, some critical data may be located 

deeper in the system. Consequently, the testing 

approach outlined in this paper deals not with 

individual components responsible for 

communication, processing, and storage, but with 

specific subsets of ECU functionalities structured 

as communicating-processing-storing of particular 

data. 

This paper investigates how recent ICT security 

advancements on threat actor modelling can 

provide insights needed to design test cases. We 

explore how to apply available security tools in 

sequences based on available security (pen)testing 

tools and methodologies. For this, we consider: 

• the concept of kill chains (sequences of 

steps) needed for an adversary to achieve a 

goal, e.g., to access data;  

• a subset of penetration testing tools 

available (for longer lists see, e.g., 

(Software Testing Help, 2019), 

(ProfessionalQA, 2019)); 

• high-level decomposition of high-tech 

systems in terms of data storing, 

processing, and communicating functions.  

This paper takes a connected vehicle case to 

illustrate how to design tool-based test sequences. 

These sequences  aim to test the ‘functionality 

triad’ in a manner independent from the system 

topology. 

2 BACKGROUND 

2.1 Introduction to security testing 

Security tests are often performed on complete 
systems and focus on simulating situations when 
the system is attacked from a particular external 
interface. For instance, (Mouratidis and Giorgini, 
2007) describes an example testing over available 
interfaces.  

The reasons behind testing nearly completed 
systems are often justified. First, testing from the 
outside simulates adversary activities when one 
needs to exploit interfaces to proceed. Second, the 
testers often have a multitude of other aspects to 
consider, not to mention the functionality of the 



barrier itself. At the same time, testing external 
interfaces can be insufficient, because it could limit 
the test coverage within the (sub)system itself. It 
was repeatedly shown that most barriers can be 
breached by brute force, social engineering, 
phishing, lost passwords, and other means. 
Additionally, although penetration testing often 
takes place late in the system design lifecycle, 
testing can be beneficial throughout the 
development life cycle and on units (Arkin et al., 
2005).  

The question remains how to test what an 
intruder can do, once access is gained. Although 
layered defenses are becoming more common, it is 
often unclear how to (automatically) test such 
defense-in-depth constructions. 

A possibility can be to test systems before 
testing interfaces are removed, i.e., when testers 
have full access to the system. Testing in such 
conditions simulate a situation when the adversary 
already obtained a foothold in the system. 
Therefore, designing tests cases that focus on 
subsystems and from within the system appears to 
be a promising direction. However, methods to 
design such tests are not so well documented, or at 
least not many strategies can be found on this topic. 

Interest to bring testing earlier in the 
development cycle led to research on testing with 
the use of simulators. One example is to employ 
hardware-in-the-loop testing. Another possibility 
concerns validation platforms like (Ming et al., 
2016) to benefit from OMNeT++ as an event-based 
network simulator, and SUMO (a road traffic 
simulator). Simulated attacks can include Message 
spoof, malicious fault of devices, physical 
disturbance. Such solutions help to reduce testing 
and validation efforts, avoid creating dangerous 
road situations and lower validation costs. Yet, 
they do not cover testing defence-in-depth aspects 
related to data security. 

This paper investigates whether pen testing 
tools commonly used at a rather late system 
development stage can also provide benefits at an 
earlier stage (when test interfaces are still 
available). We wish to contribute to discussions on 
practical strategies for subsystem testing and full 
system testing in contexts when the outer layer of 
defence is breached. 

2.2 Automotive security concerns 

The automotive domain provides a suitable 

example of a complex software-intensive high-tech 

system available in large numbers all over the 

world. In this aspect it is similar to many other 

high-tech systems, e.g., from medical, production, 

and financial domains, that are readily accessible 

over the internet. In principle, remote access to 

them is only limited by well-defined interfaces.  

New vehicle functions that rely on 

connectivity do attract customers, but they also 

open up the system to many external attack vectors. 

As a result, vehicle (sub)systems can be accessed 

by Internet, GSM, or Wi-Fi in addition to 

traditional on-board diagnostic ports (OBD) and 

Controller Area Network (CAN) communication 

buses. Accessing the latter can imply physical 

interactions with the vehicle (e.g., by simply 

drilling a door of the car). But it can also be done 

in the aftermath of remote attacks, as the following 

cases demonstrate: 

• A buffer overflow error can grant 

unauthorized access to an in-car media player. 

This breach of processing allowed the 

adversary to propagate through a CAN bus and 

reach multiple Electronic Control Units (ECU) 

(Wired, 2015). 

• A dongle used for insurance purposes that is 

plugged into the dashboard can be remotely 

hacked through external communication 

channels. This allows attackers to access the 

vehicle's essential system actuators, such as 

brakes (IBS, 2015). 

• An adversary can take control of an electric 

vehicle remotely by using an app. This results 

in accessing the vehicle’s storage with GPS 

history, which can be exfiltrated through 

communication channels (IBS, 2016). 

These examples demonstrate that relying only 

on system boundaries can be insufficient to prevent 

remote access to in-vehicle components. 

Developers need to consider protecting the in-

vehicle functionality as well. For this, data storage, 

processing, and communicating functionalities 

shall be adequately designed, implemented, and 

tested. 

2.3 Security testing approaches 

Security professionals examine high-tech systems 

by using specialized tool-based approaches like 



vulnerability assessment or offensive methods. 

Such manual and automatic security testing 

approaches have their advantages and 

disadvantages (Wallingford et al. 2019) and can 

provide valuable insights for designing security 

tests and sequences. 

Vulnerability assessment as a process to 

identify and rank vulnerabilities can be compared 

to risk assessment. This activity provides 

significant insights, but can be time consuming 

with too many attack vectors to control and 

simulate.  

Offensive methods support more focused 

system examinations. In particular, penetration 

testing as series of tasks positively impacts the 

enhancement of system security (Applebaum et al., 

2017) by considering specific attack vectors.  Such 

testing often uses the attack trees as conceptual 

diagrams representing actions of the adversary in 

connection to the asset. For different attack vectors, 

specific penetration tools like Nmap, Hydra, 

Msfconsole and Dirb can be used. 

Using (automated) test sequences can help to 

overcome some difficulties of manual assessments, 

as noted in (Miller et al., 2018).  Created tests can 

be executed systematically and, in some cases, 

continuously. Benefits of (semi-) automated 

penetration testing methods are described in 

(Samant, 2011). As an example, a semi-automatic 

security evaluation helps to enumerate automotive 

security issues  with severity ratings on each step 

of the attack chain (Cheah et al., 2018).  

Adversary emulation is an approach that assists 

to structure potential (inter)connected actions of an 

adversary. Centered on scenarios, it helps to 

effectively utilize threat intelligence, discover 

advanced persistent threats (APTs), and anticipate 

and better describe possible attack vectors. 

Cybersecurity community has accumulated a 

number of methods for describing attacks, such as 

threat models or attack trees. A prime example is 

an ATT&CK model created by MITRE researchers 

(Strom et al., 2017) based on real-world 

observations.  This represents a knowledge base of 

adversary tactics and techniques. The Cyber Kill 

Chain framework describes cyber-attacks as 

sequences of typical stages including: 

reconnaissance, weaponization, delivery, 

exploitation, installation, command and control, 

and actions on objective. This approach was used 

to describe Havex and Stuxnet cases (Assante and 

Lee, 2015) and is a subject of extensive research.  

The described data functionality triad 

constructed as a sequence resembles a simplified 

kill chain. This similarity provided us with an 

aspiration to reuse security methodologies and 

tools for testing layered security.  

3 PROPOSED APPROACH 

As mentioned, this positioning paper outlines 

possibilities to envision test sequences by 

employing high-level data handling operations 

described as (nested) Communicating, Processing, 

and Storing functionality related to the system 

boundary (Figure 1).  

The proposed steps of identifying and 

sequencing tools for ‘white-box’ testing of systems 

during the integration step include: 

1. Construct a high-level functional 

decomposition of (sub)systems involved 

in the Communicating-Processing-

Storing triad based on the focus of the test 

sequence. For instance, components that 

deal with GPS-related data.  

2. Set up initial assumptions which software 

can implement the functionality of the 

triad elements. This step is particularly 

relevant for embedded systems. For 

instance, an ECU may have limited 

resources to run general-purpose 

operating systems, while a vehicle’s 

gateway can suffice. Such ECU 

capabilities can limit usage of, e.g., 

TCP/IP tools or web applications. 

3. Relate available tools to the functional 

decomposition from step 1. Specifically, 

to identify groups of tools for: 

a. Setting up test management 

environment and the testing 

context; 

b. Testing Communicating 

functionality (located on the 

system boundary); 

c. Testing the Processing 

functionality of the system; 

d. Testing Storing functionality. 



4 ILLUSTRATIVE EXAMPLE 

This section illustrates how relevant groups of tools 

can be identified for a connected vehicle case.  

Step 1. Figure 2 shows how a vehicle use 

case can be described using the high-level 

Communicating-Processing-Storing triad. We 

assume that a connected vehicle interacts with a 

traveler, a traveler’s device (e.g., smartphone), and 

external entities (infrastructure or other vehicles). 

This section denotes them as Vehicle, TD 

(Traveler’s Device), and OtherS (Other Systems). 

The latter include, for instance, cloud-based 

services for renting a vehicle or advanced 

authentication schemes. Human machine interface 

(HMI) represents a specialized subset of 

Communicating functionality to interact with the 

traveler. Actuating and Sensing functionality 

provide inputs for Processing and act on Processing 

commands.  

 

 

Figure 1. High level architecture of an automotive 

system 

Step 2. We can set up assumptions on 

capabilities of components implementing the 

Figure 2 functional elements as follows: 

- Processing capacity of Vehicle, OtherS, 

and TD systems can support Linux and 

TCP/IP tools; 

- Vehicle.HMI (infotainment) and 

OtherS.Processing can incorporate 

webservers; 

- OtherS.Processing can support 

honeypots; 

- OtherS.Communicating can employ 

Zigbee.  

Step 3. Existing pen-testing tools can be used 

to test components that deal with high-level 

functionality shown in Figure 2.  Table 1 shows a 

(non-rigorously constructed) list that can illustrate 

the approach. The relation between the tools to the 

high-level functionality is not exhaustive and used 

here for illustrative purposes. We refer both to a 

system (Vehicle, TD, OS) and functionality 

element. For instance, ‘[Vehicle/TD].HMI’ 

indicates that the tool can be used to test Vehicle’s 

HMI or TD’s HMI. Another example, 

“All.Storing” indicates that the tool can be related 

to the Storing functionality of all systems from 

Figure 2. 

Table 1: An illustrative mapping of existing tools to 

high-level system functionality 

Tool name 
Applicability for testing: 

Figure 2 functionality Comment 

Ail-

Framework 

All.Storing and 

All.Communication  

On captured data 

contents 

BeRoot 
All.Processing; 

Vehicle.HMI 

Privilege 

escalations  

CAN-
alyzat0r 

Vehicle.Processing  Car protocols 

CANToolz Vehicle.Processing  CAN  

Can-Utils Vehicle.Processing  CAN, car network 

Cloakify Prepare All.Storing  Steganography 

DefectDojo -- Management tool  

EvilLimiter 
All.Processing (links to 
.Communicating); 

Vehicle.HMI 

Linux and 
network. ARP 

spoofing  

Infection 

Monkey 
OtherS.Processing 

SSH, WMI, 

passwords 

KillerBee OtherS.Communicating Zigbee 

Lnx Smar 
Enum 

All.Processing; 
Vehicle.HMI 

Checks for run-
ning environments 

MitmAP All.Communicating 
Simulates an 

Access Point  

Net Creds 

All.Communicating 

(incl. links to 

All.Processing); 
Vehicle.HMI (incl. link 

to .Processing) 

HTTP; FTP; 

Telnet; SMTP; 
Kerberos; NTLM 

Nmap and 

Zenmap 
All.Processing Scanner 

OWASP 

Honeypot 

OtherS.Processing; 

Vehicle.HMI 

Honeypot; web 

server 



Tool name 
Applicability for testing: 

Figure 2 functionality Comment 

P4wnP1 
All.Communication; 

[Vehicle/TD].HMI 

Emulates another 

device behavior  

Poisontap 

[Vehicle/TD].HMI; 

All.Communicating 
(USB) 

Sniffer. Provides 

an entry point 

RedHunt-

OS 

All.Processing; 

Vehicle.HMI 

Aggregator of 

tools  

SheepL 
OtherS.Processing (incl. 
link to .Communicating) 

Simulates benign 

PC users’ network 

behavior  

ShellSum 
OtherS.Processing; 

Vehicle.HMI 

Detects web 

shells, Web-server 

SSH Key 
Auth 

[Vehicle/TD/ 
OtherS].Storing 

Manage SSH keys 

Suricata 
All.Processing 

(Gateway) 

Intrusion 

detection 

 

Tools to set up the test environment can be 

used to (1) simulate scenarios how high-tech 

systems are utilized and (2) assist security testers 

in managing the test process. Afterwards, tests can 

be executed in connection to a particular 

functionality. For instance, MitmAP as a 

Communication-related tool can simulate a rogue 

access point; or Ail-Framework can assist in testing 

Storing. Complementary to individual tests, test 

sequences can be organized based on the steps 

within Communicating-Processing-Storing 

structure. The testers can assume moving from the 

system boundary to the data storage or in the 

opposite direction (e.g., during data exfiltration). 

5 DISCUSSIONS 

As integrators, high-tech companies need 

practical tools and methods for testing their 

systems before release. This paper proposed an 

approach that can be used as a reference for 

designing tool-based test sequences. Specifically, 

this paper argues in favor of extending the use of 

automated pen testing approaches to earlier 

integration stages. Testers could identify relevant 

vehicle components in connection to the data 

functionality triad.  

The described approach suggests how to 

operationalize a simplified kill chain sequence. 

While high-level functionality can be deployed to 

several system components (e.g., Storing and 

processing can be done at different locations within 

the system), the tools still stay relevant. The system 

topology and functional decomposition do not 

directly impose requirements to this method, but 

can further elaborate test sequences.  

The outlined approach can be applied 

recursively and form a basis for creating automated 

testing infrastructure. E.g., after a system 

component is added during the system integration 

stage, designated groups of tools can be applied. 

This could help ensuring continuous testing during 

system integration. 

The system under test must have dedicated test 

interfaces for testing the security of the system. 

These dedicated interfaces must give access to the 

system behind the initial security barrier, however 

these test interfaces must also provably be fully 

removed in the final system. Any remnants of this 

interface might lead to vulnerabilities or forgotten 

backdoors. 

The steps mentioned in the Proposed Approach 

section are to be tailored according to the case at 

hand. E.g., storage of particular data can be located 

in a specific part of the system. Correctly 

identifying relevant data handling functionality is 

essential. Assumptions of ECU capabilities can 

impact the future mapping between tools and 

ECUs. Furthermore, the same tools can be used for 

different types of functionality and in connection to 

different components. While the structure of the 

approach would remain the same, it is the tailoring 

of a specific system that might require inputs from 

experts. 

This paper illustrated the approach, but didn’t 

go into interdependencies of tools and testing 

infrastructures. Ensuring proportionality of tests, 

tools, and test outcomes is a subject for future 

research. Future mapping and applying will 

provide further insights on their appropriateness 

and sequences of their use. Test dependencies is 

another topic for future investigation. 

The illustrated list of tools is not exhaustive, 

rigorously constructed, or undisputable linked to 

the high-level functionality. To scope the list, we 

focused on technologies relevant to connected 

vehicles. The mentioned tools were identified 

based on their relevance to automated security 

testing, adversary emulation, vulnerability 

assessments, attack simulations, and identifying 

threats, such as threat management tools and attack 

trees. Yet, this is borrowed significantly from 

network and web testing. Future research could 



focus on more comprehensive studying how these 

and other tools can be used to devise advanced 

strategies of testing and simulated adversary 

activities.  
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