
Preprint

Constructing Tool-based Security Test Sequences for Vehicles as

High-tech Data-rich Systems

Alexandr Vasenev1, Stelios Karagiannis2 and Roland Mathijssen1
1 Joint Innovation Centre ESI (TNO), Eindhoven, The Netherlands

2 Beyond Vision, Ilhavo, Portugal

{alexandr.vasenev, roland.mathijssen}@ tno.nl, stelios.karagiannis@beyond-vision.pt

Keywords: Test sequences, Method, Reference architecture, Pen testing, Open source

Abstract: Vehicles, as a prime example of high-tech systems, get increasingly connected and
data-centric with the need to process personally identifiable information. Often,
companies that develop such systems act as integrators and need to comply to
adequate data protection requirements. For instance, GDPR requires securing
personal data. Yet, testing security of data (including, but not limited to personal data)
is challenging. Penetration testing often starts from the outside of the system and take
place at the end of the development lifecycle. This may be insufficient to adequately
test for potential errors hidden within system boundaries. Having methods to design,
execute, and reuse (automated) security test cases on a ‘white-box’ system is desirable.
This positioning paper proposes an approach to design tool-based security test
sequences. We structurally approach high-level data storing, processing, and
communicating functionality in connection to the system boundary. We suggest to
use pen-testing tools and sequences for testing the functionality of the vehicle’s
(sub)system, before test-enabling interfaces are removed. This paper intends to
contribute to discussions how to test layered defense implementations. The proposed
approach is undergoing extensions and validations.

1 INTRODUCTION

Automotive companies develop their high-tech

systems (HTS) by acting as integrators who

combine components provided by suppliers.

Improper re-use, misconfiguration, or non-

compliant components can lead to undesired

functionality and, therefore, system vulnerabilities.

Testing security as an integral non-functional

system quality is an complex task. It commonly

involves simulating attacks and employing other

kinds of penetration testing where testers play the

role of a hacker trying to attack the system

(vehicle) and exploit its vulnerabilities (Felderer et

al., 2015). This approach serves its purpose, but is

commonly used at late development stages and

often such tests start from the outside of the system.

As a result, potential errors and vulnerabilities

within the system boundary can stay hidden after

product release.

Modern-day solutions are often designed with

the defence-in-depth concept in mind, where

multiple layers of security are placed through a

system. Yet, the question remains how to test these

inner security measures properly, easily, and

securely, without introducing extra weak spots.

Arguably, automated test cases conducted on a

‘white-box’ system during system integration can

assist in providing the proper support and

reasoning for security and privacy compliance

claims towards the authorities. Test interfaces can

provide access to inner components of the vehicle.

Clearly, these interfaces are expected to be fully

removed before releasing the system.

Figure 1. The flow of the analysis

To approach white-box testing, automotive,

similar to other high-tech domains, can borrow ICT

concepts. In particular, data handling can be

approached as data storing, processing, and

communicating functions. For instance, an attacker

needs to bypass the communication, processing,

and storage functionality to access the GPS history

before being able to retrieve the data.

Figure 1 shows an analogy how elements of the

data handling functionality triad can be related to

each other through the idea of Dutch river dikes.

The water represents the environment external to

man-made structures. Next to the river is the first

protection layer, called the summer dike. Once the

summer dike is compromised, the river water can

overflow in the retention base, where the water has

room to flow, and strong waves and changes are

diminished. The retention base is again surrounded

by a second protection layer, the winter dike. As it

can also be breached, the most valuable houses or

villages are built on a higher hill, called the Terp,

to provide the last layer of defense.

Similarly, a data asset is typically located

behind several perimeters. Communicating

functionality is located on the system boundary

prior to Processing, which in turn precedes Storing.

If an intruder gets into a system, their actions shall

be dampened out, another defense layer should

exist before the more critical parts of the system,

and if that layer is breached, valuable assets need

to have yet another defense layer (e.g. extra

encryption or access control). Thus, it might take

separate steps to access Storing. To ensure data

containment (e.g., personal data or algorithms),

these steps should also tested.

This high-level functionality triad can be

implemented by different in-vehicle (sub)systems

with different components depending on the data in

focus. Communicating functionality can be mainly

included in Gateway or Telematics unit. Yet, while

those ECUs can include their own storage and

communicating, some critical data may be located

deeper in the system. Consequently, the testing

approach outlined in this paper deals not with

individual components responsible for

communication, processing, and storage, but with

specific subsets of ECU functionalities structured

as communicating-processing-storing of particular

data.

This paper investigates how recent ICT security

advancements on threat actor modelling can

provide insights needed to design test cases. We

explore how to apply available security tools in

sequences based on available security (pen)testing

tools and methodologies. For this, we consider:

• the concept of kill chains (sequences of

steps) needed for an adversary to achieve a

goal, e.g., to access data;

• a subset of penetration testing tools

available (for longer lists see, e.g.,

(Software Testing Help, 2019),

(ProfessionalQA, 2019));

• high-level decomposition of high-tech

systems in terms of data storing,

processing, and communicating functions.

This paper takes a connected vehicle case to

illustrate how to design tool-based test sequences.

These sequences aim to test the ‘functionality

triad’ in a manner independent from the system

topology.

2 BACKGROUND

2.1 Introduction to security testing

Security tests are often performed on complete
systems and focus on simulating situations when
the system is attacked from a particular external
interface. For instance, (Mouratidis and Giorgini,
2007) describes an example testing over available
interfaces.

The reasons behind testing nearly completed
systems are often justified. First, testing from the
outside simulates adversary activities when one
needs to exploit interfaces to proceed. Second, the
testers often have a multitude of other aspects to
consider, not to mention the functionality of the

barrier itself. At the same time, testing external
interfaces can be insufficient, because it could limit
the test coverage within the (sub)system itself. It
was repeatedly shown that most barriers can be
breached by brute force, social engineering,
phishing, lost passwords, and other means.
Additionally, although penetration testing often
takes place late in the system design lifecycle,
testing can be beneficial throughout the
development life cycle and on units (Arkin et al.,
2005).

The question remains how to test what an
intruder can do, once access is gained. Although
layered defenses are becoming more common, it is
often unclear how to (automatically) test such
defense-in-depth constructions.

A possibility can be to test systems before
testing interfaces are removed, i.e., when testers
have full access to the system. Testing in such
conditions simulate a situation when the adversary
already obtained a foothold in the system.
Therefore, designing tests cases that focus on
subsystems and from within the system appears to
be a promising direction. However, methods to
design such tests are not so well documented, or at
least not many strategies can be found on this topic.

Interest to bring testing earlier in the
development cycle led to research on testing with
the use of simulators. One example is to employ
hardware-in-the-loop testing. Another possibility
concerns validation platforms like (Ming et al.,
2016) to benefit from OMNeT++ as an event-based
network simulator, and SUMO (a road traffic
simulator). Simulated attacks can include Message
spoof, malicious fault of devices, physical
disturbance. Such solutions help to reduce testing
and validation efforts, avoid creating dangerous
road situations and lower validation costs. Yet,
they do not cover testing defence-in-depth aspects
related to data security.

This paper investigates whether pen testing
tools commonly used at a rather late system
development stage can also provide benefits at an
earlier stage (when test interfaces are still
available). We wish to contribute to discussions on
practical strategies for subsystem testing and full
system testing in contexts when the outer layer of
defence is breached.

2.2 Automotive security concerns

The automotive domain provides a suitable

example of a complex software-intensive high-tech

system available in large numbers all over the

world. In this aspect it is similar to many other

high-tech systems, e.g., from medical, production,

and financial domains, that are readily accessible

over the internet. In principle, remote access to

them is only limited by well-defined interfaces.

New vehicle functions that rely on

connectivity do attract customers, but they also

open up the system to many external attack vectors.

As a result, vehicle (sub)systems can be accessed

by Internet, GSM, or Wi-Fi in addition to

traditional on-board diagnostic ports (OBD) and

Controller Area Network (CAN) communication

buses. Accessing the latter can imply physical

interactions with the vehicle (e.g., by simply

drilling a door of the car). But it can also be done

in the aftermath of remote attacks, as the following

cases demonstrate:

• A buffer overflow error can grant

unauthorized access to an in-car media player.

This breach of processing allowed the

adversary to propagate through a CAN bus and

reach multiple Electronic Control Units (ECU)

(Wired, 2015).

• A dongle used for insurance purposes that is

plugged into the dashboard can be remotely

hacked through external communication

channels. This allows attackers to access the

vehicle's essential system actuators, such as

brakes (IBS, 2015).

• An adversary can take control of an electric

vehicle remotely by using an app. This results

in accessing the vehicle’s storage with GPS

history, which can be exfiltrated through

communication channels (IBS, 2016).

These examples demonstrate that relying only

on system boundaries can be insufficient to prevent

remote access to in-vehicle components.

Developers need to consider protecting the in-

vehicle functionality as well. For this, data storage,

processing, and communicating functionalities

shall be adequately designed, implemented, and

tested.

2.3 Security testing approaches

Security professionals examine high-tech systems

by using specialized tool-based approaches like

vulnerability assessment or offensive methods.

Such manual and automatic security testing

approaches have their advantages and

disadvantages (Wallingford et al. 2019) and can

provide valuable insights for designing security

tests and sequences.

Vulnerability assessment as a process to

identify and rank vulnerabilities can be compared

to risk assessment. This activity provides

significant insights, but can be time consuming

with too many attack vectors to control and

simulate.

Offensive methods support more focused

system examinations. In particular, penetration

testing as series of tasks positively impacts the

enhancement of system security (Applebaum et al.,

2017) by considering specific attack vectors. Such

testing often uses the attack trees as conceptual

diagrams representing actions of the adversary in

connection to the asset. For different attack vectors,

specific penetration tools like Nmap, Hydra,

Msfconsole and Dirb can be used.

Using (automated) test sequences can help to

overcome some difficulties of manual assessments,

as noted in (Miller et al., 2018). Created tests can

be executed systematically and, in some cases,

continuously. Benefits of (semi-) automated

penetration testing methods are described in

(Samant, 2011). As an example, a semi-automatic

security evaluation helps to enumerate automotive

security issues with severity ratings on each step

of the attack chain (Cheah et al., 2018).

Adversary emulation is an approach that assists

to structure potential (inter)connected actions of an

adversary. Centered on scenarios, it helps to

effectively utilize threat intelligence, discover

advanced persistent threats (APTs), and anticipate

and better describe possible attack vectors.

Cybersecurity community has accumulated a

number of methods for describing attacks, such as

threat models or attack trees. A prime example is

an ATT&CK model created by MITRE researchers

(Strom et al., 2017) based on real-world

observations. This represents a knowledge base of

adversary tactics and techniques. The Cyber Kill

Chain framework describes cyber-attacks as

sequences of typical stages including:

reconnaissance, weaponization, delivery,

exploitation, installation, command and control,

and actions on objective. This approach was used

to describe Havex and Stuxnet cases (Assante and

Lee, 2015) and is a subject of extensive research.

The described data functionality triad

constructed as a sequence resembles a simplified

kill chain. This similarity provided us with an

aspiration to reuse security methodologies and

tools for testing layered security.

3 PROPOSED APPROACH

As mentioned, this positioning paper outlines

possibilities to envision test sequences by

employing high-level data handling operations

described as (nested) Communicating, Processing,

and Storing functionality related to the system

boundary (Figure 1).

The proposed steps of identifying and

sequencing tools for ‘white-box’ testing of systems

during the integration step include:

1. Construct a high-level functional

decomposition of (sub)systems involved

in the Communicating-Processing-

Storing triad based on the focus of the test

sequence. For instance, components that

deal with GPS-related data.

2. Set up initial assumptions which software

can implement the functionality of the

triad elements. This step is particularly

relevant for embedded systems. For

instance, an ECU may have limited

resources to run general-purpose

operating systems, while a vehicle’s

gateway can suffice. Such ECU

capabilities can limit usage of, e.g.,

TCP/IP tools or web applications.

3. Relate available tools to the functional

decomposition from step 1. Specifically,

to identify groups of tools for:

a. Setting up test management

environment and the testing

context;

b. Testing Communicating

functionality (located on the

system boundary);

c. Testing the Processing

functionality of the system;

d. Testing Storing functionality.

4 ILLUSTRATIVE EXAMPLE

This section illustrates how relevant groups of tools

can be identified for a connected vehicle case.

Step 1. Figure 2 shows how a vehicle use

case can be described using the high-level

Communicating-Processing-Storing triad. We

assume that a connected vehicle interacts with a

traveler, a traveler’s device (e.g., smartphone), and

external entities (infrastructure or other vehicles).

This section denotes them as Vehicle, TD

(Traveler’s Device), and OtherS (Other Systems).

The latter include, for instance, cloud-based

services for renting a vehicle or advanced

authentication schemes. Human machine interface

(HMI) represents a specialized subset of

Communicating functionality to interact with the

traveler. Actuating and Sensing functionality

provide inputs for Processing and act on Processing

commands.

Figure 1. High level architecture of an automotive

system

Step 2. We can set up assumptions on

capabilities of components implementing the

Figure 2 functional elements as follows:

- Processing capacity of Vehicle, OtherS,

and TD systems can support Linux and

TCP/IP tools;

- Vehicle.HMI (infotainment) and

OtherS.Processing can incorporate

webservers;

- OtherS.Processing can support

honeypots;

- OtherS.Communicating can employ

Zigbee.

Step 3. Existing pen-testing tools can be used

to test components that deal with high-level

functionality shown in Figure 2. Table 1 shows a

(non-rigorously constructed) list that can illustrate

the approach. The relation between the tools to the

high-level functionality is not exhaustive and used

here for illustrative purposes. We refer both to a

system (Vehicle, TD, OS) and functionality

element. For instance, ‘[Vehicle/TD].HMI’

indicates that the tool can be used to test Vehicle’s

HMI or TD’s HMI. Another example,

“All.Storing” indicates that the tool can be related

to the Storing functionality of all systems from

Figure 2.

Table 1: An illustrative mapping of existing tools to

high-level system functionality

Tool name
Applicability for testing:

Figure 2 functionality Comment

Ail-

Framework

All.Storing and

All.Communication

On captured data

contents

BeRoot
All.Processing;

Vehicle.HMI

Privilege

escalations

CAN-
alyzat0r

Vehicle.Processing Car protocols

CANToolz Vehicle.Processing CAN

Can-Utils Vehicle.Processing CAN, car network

Cloakify Prepare All.Storing Steganography

DefectDojo -- Management tool

EvilLimiter
All.Processing (links to
.Communicating);

Vehicle.HMI

Linux and
network. ARP

spoofing

Infection

Monkey
OtherS.Processing

SSH, WMI,

passwords

KillerBee OtherS.Communicating Zigbee

Lnx Smar
Enum

All.Processing;
Vehicle.HMI

Checks for run-
ning environments

MitmAP All.Communicating
Simulates an

Access Point

Net Creds

All.Communicating

(incl. links to

All.Processing);
Vehicle.HMI (incl. link

to .Processing)

HTTP; FTP;

Telnet; SMTP;
Kerberos; NTLM

Nmap and

Zenmap
All.Processing Scanner

OWASP

Honeypot

OtherS.Processing;

Vehicle.HMI

Honeypot; web

server

Tool name
Applicability for testing:

Figure 2 functionality Comment

P4wnP1
All.Communication;

[Vehicle/TD].HMI

Emulates another

device behavior

Poisontap

[Vehicle/TD].HMI;

All.Communicating
(USB)

Sniffer. Provides

an entry point

RedHunt-

OS

All.Processing;

Vehicle.HMI

Aggregator of

tools

SheepL
OtherS.Processing (incl.
link to .Communicating)

Simulates benign

PC users’ network

behavior

ShellSum
OtherS.Processing;

Vehicle.HMI

Detects web

shells, Web-server

SSH Key
Auth

[Vehicle/TD/
OtherS].Storing

Manage SSH keys

Suricata
All.Processing

(Gateway)

Intrusion

detection

Tools to set up the test environment can be

used to (1) simulate scenarios how high-tech

systems are utilized and (2) assist security testers

in managing the test process. Afterwards, tests can

be executed in connection to a particular

functionality. For instance, MitmAP as a

Communication-related tool can simulate a rogue

access point; or Ail-Framework can assist in testing

Storing. Complementary to individual tests, test

sequences can be organized based on the steps

within Communicating-Processing-Storing

structure. The testers can assume moving from the

system boundary to the data storage or in the

opposite direction (e.g., during data exfiltration).

5 DISCUSSIONS

As integrators, high-tech companies need

practical tools and methods for testing their

systems before release. This paper proposed an

approach that can be used as a reference for

designing tool-based test sequences. Specifically,

this paper argues in favor of extending the use of

automated pen testing approaches to earlier

integration stages. Testers could identify relevant

vehicle components in connection to the data

functionality triad.

The described approach suggests how to

operationalize a simplified kill chain sequence.

While high-level functionality can be deployed to

several system components (e.g., Storing and

processing can be done at different locations within

the system), the tools still stay relevant. The system

topology and functional decomposition do not

directly impose requirements to this method, but

can further elaborate test sequences.

The outlined approach can be applied

recursively and form a basis for creating automated

testing infrastructure. E.g., after a system

component is added during the system integration

stage, designated groups of tools can be applied.

This could help ensuring continuous testing during

system integration.

The system under test must have dedicated test

interfaces for testing the security of the system.

These dedicated interfaces must give access to the

system behind the initial security barrier, however

these test interfaces must also provably be fully

removed in the final system. Any remnants of this

interface might lead to vulnerabilities or forgotten

backdoors.

The steps mentioned in the Proposed Approach

section are to be tailored according to the case at

hand. E.g., storage of particular data can be located

in a specific part of the system. Correctly

identifying relevant data handling functionality is

essential. Assumptions of ECU capabilities can

impact the future mapping between tools and

ECUs. Furthermore, the same tools can be used for

different types of functionality and in connection to

different components. While the structure of the

approach would remain the same, it is the tailoring

of a specific system that might require inputs from

experts.

This paper illustrated the approach, but didn’t

go into interdependencies of tools and testing

infrastructures. Ensuring proportionality of tests,

tools, and test outcomes is a subject for future

research. Future mapping and applying will

provide further insights on their appropriateness

and sequences of their use. Test dependencies is

another topic for future investigation.

The illustrated list of tools is not exhaustive,

rigorously constructed, or undisputable linked to

the high-level functionality. To scope the list, we

focused on technologies relevant to connected

vehicles. The mentioned tools were identified

based on their relevance to automated security

testing, adversary emulation, vulnerability

assessments, attack simulations, and identifying

threats, such as threat management tools and attack

trees. Yet, this is borrowed significantly from

network and web testing. Future research could

focus on more comprehensive studying how these

and other tools can be used to devise advanced

strategies of testing and simulated adversary

activities.

ACKNOWLEDGEMENTS

The research is carried out as part of the

SECREDAS project, which is co-funded by the

ECSEL Joint Undertaking of the European Union

under grant agreement number 783119 and the

Netherlands Organization for Applied Scientific

Research TNO.

REFERENCES

Applebaum, A., D. Miller, B. Strom, H. Foster, and C.

Thomas, 2017, “Analysis of automated adversary

emulation techniques.” In Proceedings of the

Summer Simulation Multi-Conference (p. 16).

Society for Computer Simulation International, July

2017.

Arkin, B., S. Stender, and G. McGraw, 2005. “Software

penetration testing. Security & Privacy, IEEE, 3(1):

84-87.

Assante M.J. and L.M. Lee, 2015, “The industrial control

system cyber kill chain”. SANS Institute InfoSec

Reading Room, 1

Cheah, M., S.A. Shaikh, J. Bryans, and P. Wooderson,

2018, “Building an automotive security assurance

case using systematic security evaluations,”

Computers & Security, 77, pp. 360-379.

Felderer, M., M. Büchler, J. Martin, A. Brucker, R. Breu,

and A. Pretschner, 2015, “Security Testing: A

Survey”, 10.1016/bs.adcom.2015.11.003.

IBS, 2015, “International Business Times. Hackers

disable Corvette brakes by texting dongle meant to

lower insurance risk”,

http://www.ibtimes.co.uk/hackers-disablecorvette-

brakes-by-texting-dongle-meant-lower-insurance-

risk-15151253, Last accessed on Dec 20, 2019.

IBS, 2016, “Hacker takes control of Nissan electric

vehicle from other side of the world through Leaf

app”, http://www.ibtimes.co.uk/hacker-takes-

control-nissan-electric-vehicle-otherside-world-

through-leaf-app-1545808. Last Accessed on Dec

20, 2019.

Miller, D., R. Alford, A. Applebaum, H. Foster, C. Little,

and B. Strom, 2018, “Automated adversary

emulation: A case for planning and acting with

unknowns,” 2018.

Ming L. et al., 2018, "A General Testing Framework

Based on Veins for Securing VANET Applications,"

IEEE SmartWorld, Guangzhou, pp. 2068-2073.

Mouratidis H. and P. Giorgini, 2007, “Security Attack

Testing (SAT)—testing the security of information

systems at design time”. Information Systems. 32.

1166-1183. 10.1016/j.is.2007.03.002

ProfessionalQA, 2019, “Penetration Testing Tools: Top

55”, July 16, http://www.professionalqa.com/

penetration-testing-tools. Last accessed on Dec 20,

2019.

Samant, N., 2011, “Automated penetration testing”

Software Testing Help website, 2019, “19 Powerful

Penetration Testing Tools In 2020 (Security Testing

Tools)”, Dec 14,

https://www.softwaretestinghelp.com/ penetration-

testing-tools/. Last accessed on Dec 20, 2019.

Strom, B.E., J.A. Battaglia, M.S. Kemmerer, W.

Kupersanin, D. Miller, C. Wampler, et al. 2017,

“Finding cyber threats with ATT&CK-based

analytics,” Technical Report MTR170202, MITRE.

Wallingford, J., M. Peshwa, and D. Kelly, 2019,

“Towards Understanding the Value of Ethical

Hacking. In International Conference on Cyber

Warfare and Security”, pp. 639-XIV. Academic

Conferences International Limited.

Wired, 2015, “GM Took 5 Years to Fix a Full-Takeover

Hack in Millions of OnStar Cars”,

https://www.wired.com/2015/09/gm-took-5-years-

fix-full-takeover-hack-millions-onstar-cars/#. Last

accessed on Dec 20, 2019.

