
Defending against Memory Corruption
Vulnerability Exploitation

Michalis Polychronakis
Associate Professor, Stony Brook University

REACT Workshop – 20 May 2021

1

The Problem

Software vulnerability exploitation
Among the leading causes of system compromise and malware infection

We have to live with C/C++
Performance, compatibility, developer familiarity, vast existing code base, …

Many memory-safe programming languages exist, but full transition
requires an immense rewriting effort

Unlikely to happen any time soon for systems code, core server and client
software, resource-constrained IoT devices, … (but we have started!)

Memory corruption bugs in network-facing software can turn into
remotely exploitable vulnerabilities

2

3

4

Defending against Vulnerability Exploitation

Finding and killing bugs
Sanitizers, fuzzing, symbolic execution, bug bounties, …

Who will find the next 0-day?

Retrofit memory safety to C/C++
Eradicate the root cause of the problem: memory errors

Performance and compatibility challenges

No protection against transient execution attacks (!)

Exploit mitigations
Assuming a vulnerability exists, “raise the bar” for exploitation

DEP, GS, SafeSEH, SEHOP, ASLR, CFI, sandboxing, …

5

TH
IS

 T
A

LK

 rewrite critical components in Rust/Go

Exploit Mitigations Do Raise the Bar…

6

Pwn2Own 2007
“A New York-based security researcher [Dino
Dai Zovi] spent less than 12 hours to identify
and exploit a zero-day vulnerability in Apple's
Safari browser” [1]

Pwn2Own a decade later
“This year saw several teams sponsored by
their employers participating” [2]

[1] https://www.theregister.co.uk/2007/04/20/pwn-2-own_winner/
[2] https://blog.trendmicro.com/pwn2own-2017-event-ages/

…but Attackers Can Often Knock the Bar Off

Code Injection

W^X (non-executable memory)

Code Reuse/ROP

ASLR

Disclosure-aided ROP

Code Randomization

JIT-ROP

R^X (execute-only memory)

…

Code Reuse (Return-oriented Programming)

8

Problem 1: Software monocultures and code bloat are
facilitators of vulnerability exploitation

Research Goal: Practical software specialization and shielding

Unneeded code and logic removal

Reduce the attack surface

Code diversification

Undermine the assumptions of adversaries

12

Code Reuse  Memory Disclosure

13

Problem 2: Transient execution attacks bypass existing
memory safety and isolation techniques

Research Goal: Robust in-memory data protection

Selective data isolation

Keep sensitive data always encrypted in memory

14

Code Specialization

Temporal System Call Specialization for Attack Surface Reduction – USENIX Security 2020

Confine: Automated System Call Policy Generation for Container Attack Surface Reduction – RAID 2020

Saffire: Context-sensitive Function Specialization and Hardening against Code Reuse Attacks – IEEE EuroS&P 2020

Configuration-driven Software Debloating – EuroSec 2019

Shredder: Breaking Exploits through API Specialization – ACSAC 2018

15

Software Debloating and Specialization

Development using libraries, frameworks,
and toolkits has many benefits

Rapid program development

Disk and memory savings

Easy maintenance: bug fixes, security patches, …

But applications end up including code they don’t use
and have access to features they don’t need

Some libraries/modules/plugins are not needed by certain (or default) configurations

Some library functions are not imported at all

Some system calls are never used
…

17

Software Debloating and Specialization

Code bloat  increased attack surface
Unneeded code: may still contain exploitable vulnerabilities (e.g., Heartbleed)

Unneeded code: more ROP gadgets for writing code reuse exploits

Unused (dangerous) system calls: exploit code can still invoke them to perform
harmful operations (e.g., execve, mprotect)

Unused system calls: entry points for exploiting kernel vulnerabilities that can lead to
privilege escalation

Our goal: reduce the attack surface by removing unneeded code

Main benefits:
Break exploit payloads (shellcode, ROP) or at least hinder their construction

Neutralize kernel vulnerabilities associated with certain system calls

18

20

/etc/nginx/nginx.conf
worker_processes 1;
error_log /var/log/nginx/error.log;

events { worker_connections 1024; }

http {
include mime.types;
index default.html default.htm;
default_type application/octet-stream;

access_log /usr/local/nginx/logs/nginx.pid;
geoip_country /usr/local/nginx/conf/GeoIP.dat; # libGeoIP.so
charset UTF-8;
keepalive_timeout 65;

server {
listen 443 ssl; # libssl.so
gzip on; # libz.so
ssl_certificate cert.pem; # libssl.so
ssl_certificate_key cert.key; # libssl.so

location / {
root /var/www/hexlab;
index default.php;
image_filter resize 150 100; # libgd.so
rewrite ^(.*)$ /msie/$1 break; # libpcre.so

}

location /test {
xml_entities /var/www/hexlab/entities.dtd; # libxml2.so
xslt_stylesheet /var/www/hexlab/one.xslt; # libxslt.so

}
}

}

Configuration-driven Debloating [EuroSec ’19]

22

Nginx: 77%
(25 out of 33 libraries)

OpenSSH: 20%
(7 out 22 libraries)

VSFTPD: 53%
(7 out of 10 libraries)

More than 3/4 of the
code is removed (!)

More than half of the
code is removed (!)

1/5 of the code is
removed

Kernel Attack Surface Reduction

Most kernel CVEs that lead to local privilege escalation/container
escape involve bugs in the implementation of specific system calls

Exposing fewer system calls to containers reduces the kernel’s attack surface

Docker prohibits access to 44 (rarely used) system calls by default
Enforced by applying a Seccomp BPF filter during initialization

What about the rest of the system calls? Do all containers need them?
Linux kernel v4.15 provides 333 system calls

Our goal: disable as many system calls as possible according to the actual
needs of a given container

25

Confine: System Call Filtering for Containers [RAID ’20]

Previous approaches: dynamic analysis and training
Drawback: workload-specific, challenging to exercise all the code that may be needed

Static code analysis
Inspect all execution paths of the containerized application and all its dependencies

Identify the superset of system calls required for the operation of the container

Input: Docker container image

Output: ready-to-use Seccomp filter

Open-source prototype: https://github.com/shamedgh/confine

26

https://github.com/shamedgh/confine

Evaluation: Disabled System Calls

28

Data set: 150 Docker
images downloaded
from Docker Hub

Confine disables 145 or
more system calls (out
of 326) for about half of
the containers

Worst case: 100 or more
disabled system calls
(still at least twice than
Docker’s default filter)

145 or more disabled
system calls for half
of the containers

Evaluation: Neutralized Kernel CVEs

CVE to kernel function mapping
Collected Linux kernel CVEs through web scraping

Mapped CVEs to source code file and line based on git commit messages

Assigned CVEs to functions

Created Linux kernel call graph based on KIRIN [1]

Result: 28 CVEs removed
7 removed from more than 123 containers

16 removed from more than 100 containers

30

[1] PeX: A Permission Check Analysis Framework for Linux Kernel – USENIX Security ’19

Can We Do Better?

Consider the behavior of processes across time [USENIX Security ’20]

Disable additional (dangerous) system calls that are needed only during the
initialization phase, after entering the serving phase

Example: Apache and Nginx invoke execve only during initialization

Specialize the remaining API calls [ACSAC ’18, EuroS&P ’20]

Create a custom function per call site, tailored to its arguments

Static argument binding: eliminate arguments with static values and concretize them
within the function body

Dynamic argument binding: apply a narrow-scope form of data flow integrity to
restrict the acceptable values of arguments that cannot be statically derived

32

Selective Data Protection

DynPTA: Combining Static and Dynamic Analysis for Practical Selective Data Protection – IEEE S&P 2021

xMP: Selective Memory Protection for Kernel and User Space – IEEE S&P 2020

Mitigating Data Leakage by Protecting Memory-resident Sensitive Data – ACSAC 2019

33

CACHE

SECRETSECRET

Process Data Leakage

34

Branch
Prediction

Return
Stack
Buffer

Load/Store Queues

ALU
CACHE

R E G S

CACHECACHE

SECRET

Process Data Leakage

35

Branch
Prediction

Return
Stack
Buffer

Load/Store Queues

ALU

R E G S

SECRET

ALU

SECRET

CACHECACHE

Process Data Leakage

36

Branch
Prediction

Return
Stack
Buffer

Load/Store Queues

ALU

R E G S

SGX ENCLAVE

Intel PKRU domain

SECRET

ALU

SECRET

SECRET

CACHECACHE

Branch
Prediction

Return
Stack
Buffer

Load/Store Queues

ENCRYPTED
SECRET

ENCRYPTED
SECRET

ENCRYPTED
SECRETSECRET

In-memory Data Encryption

37

ALU

R E G S

ENCRYPTED
SECRET

ALU

ENCRYPTED
SECRET

SECRET

Keeping In-Memory Data Encrypted [ACSAC ’19]

Memory accesses must be instrumented at various program points

Example: Protect all accesses to PRIVATE_KEY

Challenge: static (points-to) analysis is imprecise and leads to unnecessary
memory encryption operations

Need a sound and scalable way to automatically instrument software

39

ptr = PRIVATE_KEY;

if (a > b) {
d = 10 + c;
*ptr = d;

}

ptr = PRIVATE_KEY;

if (a > b) {
d = 10 + c;
*ptr = d;

}

ptr = PRIVATE_KEY;

if (a > b) {
d = 10 + c;
encrypt(ptr, d);

}

DynPTA: Combining Static and Dynamic Analysis [IEEE S&P ’21]

Goal: Identify all memory operations that need to be transformed

Static analysis:
Sound but imprecise

Dynamic analysis:
Precise but unsound

40

Dataflow GraphBest of both worlds: static analysis to ensure all code is covered,
dynamic analysis to elide expensive instrumentation

v0

v1 v2 v3

v4 v5 v6 v7 v8v9 v10

Static AnalysisDynamic Analysis

Summary

Reduce the attack surface through software specialization

Prevent data leakage through selective in-memory data encryption

Open-source prototypes
https://github.com/shamedgh/confine

https://github.com/shamedgh/temporal-specialization

https://github.com/taptipalit/dynpta

41

DARPA YFA D18AP00045: Reducing Software Attack Surface through Compiler-Rewriter Cooperation
ONR N00014-17-1-2891: Multi-layer Software Transformation for Attack Surface Reduction and Shielding
NSF CNS-1749895: CAREER: Principled and Practical Software Shielding against Advanced Exploits

https://github.com/shamedgh/confine
https://github.com/shamedgh/temporal-specialization
https://github.com/shamedgh/temporal-specialization
https://github.com/taptipalit/dynpta
https://github.com/taptipalit/dynpta

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 17
	Slide Number 18
	Slide Number 20
	Slide Number 22
	Slide Number 25
	Slide Number 26
	Slide Number 28
	Slide Number 30
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66

