Q\\\‘ Stony Brook University HE = LHE

Defending against Memory Corruption
Vulnerability Exploitation

Michalis Polychronakis

Associate Professor, Stony Brook University

REACT Workshop — 20 May 2021

The Problem

Software vulnerability exploitation

Among the leading causes of system compromise and malware infection

We have to live with C/C++

Performance, compatibility, developer familiarity, vast existing code base, ...

Many memory-safe programming languages exist, but full transition
requires an immense rewriting effort

Unlikely to happen any time soon for systems code, core server and client
software, resource-constrained loT devices, ... (but we have started!)

Memory corruption bugs in network-facing software can turn into
remotely exploitable vulnerabilities

Dashboard: Zero-Days in Desktop

C @& 0 a

+

radsix.com

Chrome

11

The web browser with the most zero-day exploits in recent history is

Date

12 Mar 2021
02 Mar 2021
05 Feb 2021
04 Feb 2021
11 Nov 2020
11 Nov 2020
02 Nov 2020
20 Oct 2020
11 Aug 2020
14 Jul 2020
03 Apr 2020

03 Apr 2020

Dashboard: Zero-Days in Web Browsers

IE

5

Firefox

5

Browser

Chrome
Chrome
Chrome
IE
Chrome
Chrome
Chrome
Chrome
IE
Chrome
Firefox
Firefox

CVE Reference

CVE-2021-21193
CVE-2021-21166
CVE-2021-21148
CVE-2021-26411
CVE-2020-16017
CVE-2020-16013
CVE-2020-16009
CVE-2020-15099
CVE-2020-1380
CVE-2020-6519
CVE-2020-6820
CVE-2020-6819

8.8
8.8
8.8
8.8
8.8
8.8
8.8
8.8
7D
8.2
8.8
8.8

CV5s5s

Hardened IE*

l

Type

Use-after-free
Object lifecycle
Heap corruption
Heap corruption
Security bypass
Heap corruption

Heap corruption

Heap corruption
Use-after-free
Security bypass
Use-after-free
Use-after-free

Safan

7

Vendor
Advisory

Link
Link
Link
Link
Link
Link
Link
Link
Link
Link
Link
Link

A

i G0

a+
am

|

»

N13

[

=

=]

0| ea

=]

13

=

T 0Oday "In the Wild

C @ 0

-

CVE
CVE-2021-21183
CVE-2021-26411
CVE-2021-21166
CVE-2021-27065
CVE-2021-26858
CVE-2021-26857
CVE-2021-26855
CVE-2021-1732
CVE-2021-21017
CVE-2021-21148
CVE-2021-1871
CVE-2021-1870
CVE-2021-1782
CVE-2021-1647
CVE-2020-16017
CVE-2020-16013
CVE-2020-27932
CVE-2020-27950
CVE-2020-27930
CVE-2020-16010
CVE-2020-16009
CVE-2020-17087

<

+ =

- GEIIZH_'.]|E 5

& 25

B
Vendor
Google
Microsoft
Google
Microsoft
Microsoft
Microsoft
Microsoft
Microsoft
Adobe
Google

Apple
Apple
Apple

Microsoft
Google
Google

Apple
Apple

Apple
Google

Google
Microsoft

Introduction -

+

google.com

Product
Chrome

Internet Explorer
Chrome
Exchange Server
Exchange Server
Exchange Server
Exchange Server
Windows
Reader

Chrome

10S

i0S

i0Ss

Windows Defender
Chrome

Chrome

i0S

i0S

10S

Chrome

Chrome
Windows

All - 2021 ~

Type

Memory Corruption
IMemory Corruption
Memory Corruption
Logic/Design Flaw
Logic/Design Flaw
Logic/Design Flaw
Logic/Design Flaw
Memory Corruption
Memory Corruption
IMemory Corruption
Logic/Design Flaw
Logic/Design Flaw
Memory Corruption
Memory Corruption
Memory Corruption
Memory Corruption
Memory Corruption
Information Leak
Memory Corruption
Memory Corruption
Memory Corruption

Memory Corruption

2020 ~ 2019

Description

Use-after-free in Blink

Use-after-free in MSHTIML
Object lifecycle issue in audio

Arbitrary file write
Arbitrary file write

Insecure deserialization in the Unifed Messaging service

Server-side request forgery (55RF)

Unspecified win32k escalation of privilege

Heap-based buffer overflow
Heap buffer overflow in V&

Unspecified logic flaw in Webkit
Unspecified logic flaw in Webkit

Unspecified kernel race condition

Unspecified remote code execution in Windows Defende
Use-after-free in site isolation

Unspecified memory corruption in v8

Unspecified type confusion in kernel

Unspecified memory initialization issue in kernel
Unspecified memory corruption in font parsing

Unspecified memory corruption in Chrome on Android s:

Type confusion in TurboFan map deprecation
Heap buffer overflow in cng.sys IOCTL 0x380400

2018 ~

2017 ~

2016 ~

2015 ~

4

|

ey O IN @D == O

r G e L

Date Patched Reported By
2021-03-12 777
2021-03-09 yangkang(@dnpushme) & huangyi(
2021-03-02 Alison Huffman, Microsoft Browser
2021-03-02 Volexity, Orange Tsal from DEVCOI
2021-03-02 Microsoft Threat Intelligence Center
2021-03-02 Dubex and Microsoft Threat Intellige
2021-03-02 Volexity, Orange T=zai from DEVCOI
2021-02-09 JinCQuan, MaDongfe, TuXaoYi, and
2021-02-09 777
2021-02-04 Mattias Buelens
2021-01-26 777
2021-01-26 777
2021-01-26 7?77
2021-01-12 777
2020-11-11 777
2020-11-11 7277
2020-11-05 Google Project Zero
2020-11-05 Google Project Zero
2020-11-05 Google Project Zero
2020-11-02 Google Project Zero
2020-11-02 Google Project Zero/Google TAG
2020-11-10 Google Project Zero

>

b

Defending against Vulnerability Exploitation

Finding and killing bugs
Sanitizers, fuzzing, symbolic execution, bug bounties, ...
Who will find the next 0-day?

Retrofitmemerny-safetyte-c/c++ > rewrite critical components in Rust/Go

Eradicate the root cause of the problem: memory errors
Performance and compatibility challenges

No protection against transient execution attacks (!)

<
=
[
=
L
-

Exploit Mitigations Do Raise the Bar...

Pwn20wn 2007

"A New York-based security researcher [Dino
Dai Zovi] spent less than 12 hours to identify
and exploit a zero-day vulnerability in Apple's
Safari browser”

Pwn20wn a decade later

“This year saw several teams sponsored by
their employers participating”

...but Attackers Can Often Knock the Bar Off

Code Injection
WAX
Code ReusefROP
ASLR
Disclosure-aideq ROP
Code Randomization
JITHROP

\
/
\
/
\
/
\

RAX

Code Reuse (Return-oriented Programming)

Problem 1: Software monocultures and code bloat are
facilitators of vulnerability exploitation

Research Goal: Practical software specialization and shielding

Unneeded code and logic removal

Reduce the attack surface

Code diversification

Undermine the assumptions of adversaries

Code Reuse > Memory Disclosure

W LY

Problem 2: Transient execution attacks bypass existing
memory safety and isolation techniques

Research Goal: Robust in-memory data protection

Selective data isolation

Keep sensitive data always encrypted in memory

Code Specialization

Temporal System Call Specialization for Attack Surface Reduction — USENIX Security 2020

Confine: Automated System Call Policy Generation for Container Attack Surface Reduction — RAID 2020

Saffire: Context-sensitive Function Specialization and Hardening against Code Reuse Attacks — IEEE EuroS&P 2020
Configuration-driven Software Debloating — EuroSec 2019

Shredder: Breaking Exploits through API Specialization - ACSAC2018

Software Debloating and Specialization django (@ebGL. boost

C++ LIBRARIES

Development using libraries, frameworks,

and toolkits has many benefits - 00 Mrans
Rapid program development .matplotlib e
Disk and memory savings @
Easy maintenance: bug fixes, security patches, ... "“?‘F’""

But applications end up including code they don't use OpensSSL

and have access to features they don't need
Some libraries/modules/plugins are not needed by certain (or default) configurations
Some library functions are not imported at all

Some system calls are never used

Software Debloating and Specialization

Code bloat > increased attack surface

Unneeded code: may still contain exploitable vulnerabilities (e.g., Heartbleed)
Unneeded code: more ROP gadgets for writing code reuse exploits

Unused (dangerous) system calls: exploit code can still invoke them to perform
harmful operations (e.g., execve, mprotect)

Unused system calls: entry points for exploiting kernel vulnerabilities that can lead to
privilege escalation

Our goal: reduce the attack surface by removing unneeded code

Main benefits:
Break exploit payloads (shellcode, ROP) or at least hinder their construction

Neutralize kernel vulnerabilities associated with certain system calls

/etc/nginx/nginx.conf
worker processes 1;
error_log /var/log/nginx/error.log;

events { worker_connections 1024; }

http {
include mime.types;
index default.html default.htm;
default type application/octet-stream;

access log /usr/local/nginx/logs/nginx.pid;

geoip country /usr/local/nginx/conf/GeoIP.dat; # libGeoIP.so
charset UTF-8;

keepalive_ timeout 65;

server {
listen 443 ssl; # libssl.so
gzip on; # libz.so
ssl certificate cert.pem; # libssl.so
ssl certificate key cert.key; # libssl.so

location / {
root /var/www/hexlab;
index default.php;
image filter resize 150 100; # libgd.so
rewrite ~(.*)$ /msie/$1 break; # libpcre.so

}

location /test {
xml _entities /var/www/hexlab/entities.dtd; # libxml2.so
xslt stylesheet /var/www/hexlab/one.xslt; # libxslt.so

}
}
}

Configuration-driven Debloating [FuroSec’19]

1%

W Basic W GeolP
W XSLT m Image filter
Nginx: 77%

(25 out of 33 libraries)

More than 3/4 of the
code is removed (!)

M Basic m SSL .
= PAM = TCP Wrapper M Basic W Kerberos m PAM
VSFTPD: 53% OpenSSH: 20%
(7 out of 10 libraries) (7 out 22 libraries)
More than half of the 1/5 of the code is
code is removed (!) removed

Kernel Attack Surface Reduction

Most kernel CVEs that lead to local privilege escalation/container
escape involve bugs in the implementation of specific system calls

Exposing fewer system calls to containers reduces the kernel’s attack surface

Docker prohibits access to 44 (rarely used) system calls by default
Enforced by applying a Seccomp BPF filter during initialization

What about the rest of the system calls? Do all containers need them?

Linux kernel v4.15 provides 333 system calls

Our goal: disable as many system calls as possible according to the actual
needs of a given container

Confine: System Call Filtering for Containers [RAID '20]

Previous approaches: dynamic analysis and training

Drawback: workload-specific, challenging to exercise all the code that may be needed

Static code analysis
Inspect all execution paths of the containerized application and all its dependencies

|dentify the superset of system calls required for the operation of the container
Input: Docker container image
Output: ready-to-use Seccomp filter

Open-source prototype: https://github.com/shamedgh/confine

https://github.com/shamedgh/confine

Evaluation: Disabled System Calls

Data set: 150 Docker 100%
images downloaded 0
from Docker Hub “g; 80% -
Confine disables 145 or S
O o/,
more system calls (out o 0%
of 326) for about half of X
the containers qé} 40% - 145 or more disabled
© system calls for half
Worst case: 100 or more S 50% - of the containers
disabled system calls o
(still at least twice than 0% - | | | | | |
Docker’s default filter) 100 120 140 160 180 200 220

Filtered System Calls

Evaluation: Neutralized Kernel CVEs

CVE to kernel function mapping

Collected Linux kernel CVEs through web scraping
Mapped CVEs to source code file and line based on git commit messages

Assigned CVEs to functions

Created Linux kernel call graph based on KIRIN [1]
Result: 28 CVEs removed

7 removed from more than 123 containers

16 removed from more than 100 containers

Can We Do Better?

Consider the behavior of processes across time [USENIX Security '20]

Disable additional (dangerous) system calls that are needed only during the
initialization phase, after entering the serving phase

Example: Apache and Nginx invoke execve only during initialization

Specialize the remaining API calls [ACSAC 18, EuroS&P '20]
Create a custom function per call site, tailored to its arguments

Static argument binding: eliminate arguments with static values and concretize them
within the function body

Dynamic argument binding: apply a narrow-scope form of data flow integrity to
restrict the acceptable values of arguments that cannot be statically derived

Selective Data Protection

DynPTA: Combining Static and Dynamic Analysis for Practical Selective Data Protection — IEEE S&P 2021
XxMP: Selective Memory Protection for Kernel and User Space - IEEE S&P 2020

Mitigating Data Leakage by Protecting Memory-resident Sensitive Data - ACSAC 2019

Process Data Leakage

F

o~
SECRET

Branch Return

Prediction .

Load/Store Queues

Process Data Leakage

F

o~
SECRET

)

Branch Return

Predﬂon

2
SRS ZomBIELOAD
l ATACK RERRRRRRRRRRRRRRRRRAR
)
q

Load/Store Que

Process Data Leakage

F

— — Intel PKRU domain i
(@ " ST T T

SECRET

mﬁ @i "

FoREsHADOW

) JE——

.

Branch

ZomMBIELOAD
ATTACK

- SGXENCLAVE

In-memory Data Encryption

QD [E 0 I 1T .
F O e SECRET
l . | [

Branch Return

SECRET

izﬁﬁ -

Load/St

Prmﬂon
'.'Qfg
‘E:%i:i?. ZomeieL.oad
ATTACK
(
Uk

ITTTITR

Keeping In-Memory Data Encrypted [ACSAC'19]
Memory accesses must be instrumented at various program points

Example: Protect all accesses to PRIVATE_KEY

ptr = PRIVATE_KEY; ptr = PRIVATE_KEY; ptr = PRIVATE_KEY;
if (a > b) { if (a > b) { if (a > b) {

d = 10 + c; d = 10 + c; d = 10 + c;

*ptr = d; *ptr = d; encrypt(ptr, d);
} } }

Challenge: static (points-to) analysis is imprecise and leads to unnecessary
memory encryption operations

Need a sound and scalable way to automatically instrument software

DynPTA: Combining Static and Dynamic Analysis [IEEE S&P '21]
Goal: Identify all memory operations that need to be transformed

Static analysis:
Sound but imprecise

Dynamic analysis:
Precise but unsound

v9

" @ =

Best of both worlds: static analysis to emsuwweiallGadgeiis covered,
dynamic analysis to elide expensive instrumentation

Summary
Reduce the attack surface through software specialization

Prevent data leakage through selective in-memory data encryption

Open-source prototypes
https://github.com/shamedgh/confine

https://github.com/shamedgh/temporal-specialization

https://github.com/taptipalit/dynpta

‘\\\‘ Stony Brook University HE>xLAE

DARPA YFA D18AP00045: Reducing Software Attack Surface through Compiler-Rewriter Cooperation
ONR NO0014-17-1-2891: Multi-layer Software Transformation for Attack Surface Reduction and Shielding
NSF CNS-1749895: CAREER: Principled and Practical Software Shielding against Advanced Exploits

https://github.com/shamedgh/confine
https://github.com/shamedgh/temporal-specialization
https://github.com/shamedgh/temporal-specialization
https://github.com/taptipalit/dynpta
https://github.com/taptipalit/dynpta

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 17
	Slide Number 18
	Slide Number 20
	Slide Number 22
	Slide Number 25
	Slide Number 26
	Slide Number 28
	Slide Number 30
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66

