

Towards an Open, Secure, Decentralized and Coordinated

Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture

(integration IT-1)

Project Number 730929

Start Date 01/01/2017

Duration 36 months

Topic ICT-06-2016 - Cloud Computing

Work Package WP5, PoC Integration and Demonstration Strategy

Due Date: M16

Submission Date: 11/05/2018

Version: 1.4

Status Final

Author(s): Román Sosa (ATOS), Roi Sucasas (ATOS), Anna Queralt (BSC), Daniele Lezzi (BSC),
Antonio Salis (ENG), Alexander Leckey (INTEL), Cristovao Cordeiro (SIXSQ), Jens
Jensen (STFC), Cheney Ketley (STFC), Shirley Crompton (STFC), Franscisco Carpio
(TUBS), Eva Tordera (UPC), Xavi Masip (UPC), Sergi Sànchez (UPC), Jordi Garcia
(UPC), Ester Simó (UPC), Alejandro Jurnet (UPC), Zeineb Rejiba (UPC), Souvik
Sengupta (UPC), Alejandro Gómez (UPC), Denis Guilhot (WOS), Alejandro
Lampropulos (WOS), Matija Cankar (XLAB)

Reviewer(s) Jens Jensen (STFC), Admela Jukan (TUBS)

Keywords

Implementation, PoC, demonstration, integration

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 2

Project co-funded by the European Commission within the Seventh Framework Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 730929. Any dissemination of results here presented reflects only the consortium view. The
Research Executive Agency is not responsible for any use that may be made of the information it contains.

This document and its content are property of the mF2C Consortium. All rights relevant to this document are
determined by the applicable laws. Access to this document does not grant any right or license on the document or its
contents. This document or its contents are not to be used or treated in any manner inconsistent with the rights or
interests of the mF2C Consortium or Partners detriment.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 3

Version History
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 21/03/2018 ToC and assignments Cristovao Cordeiro
(SIXSQ)

0.2 22/03/2018 Preliminary considerations for section 3 Jens Jensen (STFC)

0.3 11/04/2018 Section 4 restructured All

0.4 17/04/2018 Initial inputs All

0.5 18/04/2018 Further contributions All

0.6 22/04/2018 First workflows added All

0.7 23/04/2018 Missing workflows added All

0.8 24/04/2018 UCs and security tests added All

0.9 27/04/2018 Missing workflows added All

1.0 01/05/2018 First integrated version All

1.1 03/05/2018 Internal review Admela Jukan (TUBS),
Jens Jensen (STFC)

1.2 04/05/2018 Review and initial quality check Lara López (ATOS)

1.3 08/05/2018 Comments addressed All

1.4 11/05/2018 Further refinement and final quality check Lara López (ATOS)

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 4

Table of Contents

Version History .. 3
Table of Contents .. 4
List of figures ... 5
List of tables ... 6
Executive Summary .. 7
1. Introduction ... 8

1.1 Purpose .. 8
1.2 Glossary of Acronyms .. 8

2. IT-1 Scope .. 9

2.1 Obsolete and IT-2-only Components ... 9
2.2 IT-1 Core Components ... 10
2.3 Conventions ... 11

3. Workflows update ... 13

3.1 Registration and Identification .. 13
3.2 Discovery, Authentication (Security) and Categorization ... 15
3.3 Leader failure ... 17
3.4 Monitoring ... 19
3.5 User Profiling ... 20
3.6 Sharing model .. 20
3.7 Service registration and Service Level Agreement-based QoS Analysis .. 21
3.8 Lifecycle Management... 23
3.9 Landscaper ... 27
3.10 Evaluate an SLA Agreement .. 27
3.11 Distributed Execution Runtime ... 28
3.12 Data Management ... 32
3.13 Analytics... 37

4. PoC Description ... 38

4.1 General Functionality Demonstration ... 39

4.1.1 Registration, Discovery and Leader failure .. 40

4.2 Use Cases ... 41

4.2.1 Use Case 1 .. 41
4.2.2 Use Case 2 .. 43
4.2.3 Use Case 3 .. 45

4.3 Service Catalogue – The Hello World .. 47

5. mF2C in IT-1 ... 49

5.1 Testbeds .. 49

5.1.1 UPC-WoS Testbed .. 49
5.1.2 XLAB Testbed ... 51
5.1.3 ENG Testbed .. 51

5.2 Orchestration and Installation ... 52
5.3 Security Tests ... 52

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 5

5.3.1 Security test validation .. 52
5.3.2 Security test implementation .. 53
5.3.3 Overall result ... 54
5.3.4 Discussion .. 55

5.4 Testers Task Force ... 55

References ... 59
Appendix 1: Start Application request .. 60
Appendix 2: Single-server detailed security test results ... 62
Appendix 3: Cross-system detailed security test results ... 69
Appendix 4: Security architecture competence results .. 73
Appendix 5: Business function security test results .. 76
Appendix 6: Threat model reference .. 77
Appendix 7: Security architecture reference .. 79
Appendix 8: Privacy tests detailed results ... 80

List of figures
Figure 1 Components layout for IT-1 ... 11
Figure 2 Registration and Identification Workflow ... 13
Figure 3 Registration page screenshot .. 14
Figure 4 Login page screenshot ... 14
Figure 5 Download page screenshot ... 15
Figure 6 Discovery, authentication and categorization workflow ... 16
Figure 7 Screenshot of the discovery module execution .. 16
Figure 8 Workflow execution .. 16
Figure 9 Screenshot of the categorization module execution .. 17
Figure 10 Leader failure workflow ... 18
Figure 11 Screenshot of the backup selection and keepalive reception ... 18
Figure 12 Screenshot of leader disconnection .. 19
Figure 13 Screenshot of the new backup selection ... 19
Figure 14 Monitoring workflow ... 19
Figure 15 Profile properties configuration (initialization and update workflow) ... 20
Figure 16 Configuration of shareable resources when installing mF2C software ... 21
Figure 17 Service registration in the Service Manager and QoS provider .. 22
Figure 18 QoS Provider - Deep Q-learning algorithm design .. 22
Figure 19 Lifecycle Management - Service initialization ... 24
Figure 20 Start a service .. 25
Figure 21 Stop a service ... 25
Figure 22 Service operation ... 26
Figure 23 Lifecycle Management - Service termination .. 26
Figure 24 Landscaper start .. 27
Figure 25 Example of SLA agreement .. 28
Figure 26 SLA Management – Evaluate agreement .. 28
Figure 27 Distributed Execution Runtime – Start application ... 29
Figure 28 Deployment of DER ... 30
Figure 29 Execution of an application ... 31

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 6

Figure 30 Data Management – Create .. 32
Figure 31 Data Management – Read ... 33
Figure 32 Data Management – Update ... 33
Figure 33 Data Management – Delete .. 34
Figure 34 Data Management – Query ... 34
Figure 35 Data Management – Tests (part 1) .. 35
Figure 36 Data Management – Tests (part 2) .. 36
Figure 37 Service characterization .. 37
Figure 38 LoadSensing for Infrastructure monitoring .. 42
Figure 39 Use case 2 system architecture ... 44
Figure 40 Use Case 3 system architecture ... 46
Figure 41 Registration of a new service .. 47
Figure 42 Generated JSON for a ‘Hello World’ service example ... 48
Figure 43 Service Catalogue .. 48
Figure 44 Topology of use case 1 .. 49
Figure 45 CRAAX Testbed .. 50
Figure 46 Infrastructure of use case 1 ... 50
Figure 47 Example of nmap ... 53
Figure 48 Traefik monitoring page exposed .. 53
Figure 49 Example 2 of use of nmap ... 54

List of tables
Table 1. Acronyms ... 8
Table 2. Platform Manager .. 9
Table 3. Agent Controller .. 10
Table 4. Ports and naming conventions .. 12
Table 5. Test case table ... 56
Table 6. Test results summary ... 58

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 7

Executive Summary

This deliverable presents interaction between the mF2C components in IT-1, their functionalities and

relations, in order to provide the first version of the project reference architecture. The main focus of the

document is to describe the functionalities that will be supported by the prototype in IT-1, the integration

process to build a prototype and the tests used to validate the prototype.

The technical workflows defined in past deliverables will be reviewed and updated according to their role in

IT-1. The infrastructures to be used as testbeds for IT-1 will also be proposed, together with the main

functionality demonstrations and use cases' applications.

The outcome of this document is a description of the mF2C prototype that will be used by the use cases to

demonstrate the mF2C approach.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 8

1. Introduction

This document presents the integration of the mF2C [1] components for IT-1 to provide the first prototype
of the mF2C platform.

The deliverable D2.6 mF2C Architecture (IT-1) [2] presented the initial architecture for the IT-1, while each
of the architecture blocks were described in more detail in deliverables D3.3 Design of the mF2C Controller
Block IT-1 [3] and D4.3 Design of the mF2C Platform Manager block components and microagents IT-1 [4].
The architecture has been refined and updated since the submission of these deliverables. Therefore, this
document also reports on the modifications of functionalities supported by the mF2C blocks for IT-1.

This document is structured as follows:

 Section 2 shows the list of updated functionalities for IT-1 and the ones planned for IT-2.

 Section 3 presents the project workflows update.

 Section 4 introduces the first mF2C prototype and the use cases to be used for validating the
platform.

 Section 5 describes the testbeds where the mF2C prototype has been installed and the type of tests
that have been performed to validate the platform.

 The appendices show the results of the tests described in section 5.

1.1 Purpose

The objective of this deliverable is to describe the first integrated prototype of the mF2C system, the
process used to validate the prototype and its results.

1.2 Glossary of Acronyms
Acronym Definition

API Application Programming Interface

BT BlueTooth

BW Band Width

CA Certification Authority

CAU Control Area Unit

CIMI Cloud Infrastructure Management Interface

CSR Certificate Signing Request

GPS Global Positioning System

IoT Internet of Things

IR Infra Red

JSON JavaScript Object Notation

IT Iteration

PoC Proof of Concept

PoI Point of Interest

QoS Quality of Service

REST REpresentational State Transfer

SLA Service Level Agreement

UC Use Case

Table 1. Acronyms

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 9

2. IT-1 Scope

For IT-1, the main goal is to demonstrate the feasibility of the foreseen components and functionalities of
the mF2C system. The technical workflows and overall architecture defined in a previous deliverable (D2.6)
are to be demonstrated and validated to some extent during this phase.

As a collaborative project, where many programmatic components are being developed from scratch, some
functionalities have taken priority while others have either been discontinued after deeper analysis or
postponed to IT-2. The following subsections will address which components belong to IT-1, which ones
have been left out, and some of the technical decisions that have been taken in order to ease the
development and integration process.

2.1 Obsolete and IT-2-only Components

Several components are now out of scope or now obsolete from the original design. The components
identified as out of scope are being postponed to IT-2. These are highlighted in Figure 1.

The table below includes new functionalities that we've defined lately, but which might only be
implemented for IT-2, such as the Event service. In some cases, entire components have been postponed,
in other cases only previously proposed functionality of a component. In some cases where a component
has been considered as obsolete, as replacement or alternative component has been introduced.

Module Component Description

Telemetry
Monitoring

Intelligent
Instrumentation

Distributed Query
Engine

Event Service

Module to analyze metrics output to allow for throttling
publishing frequencies depending on e.g., anomaly
detection, battery degradation, etc.

Module to allow the query engine to provide a single API
that abstracts access to multiple locations of metrics
published. A single location will be used for IT-1 and
extended for IT-2

An event queue used by each of the modules to
publish/subscribe to events, e.g., service deployed, device
added/removed, etc.

Service
Orchestration

SLA Management The automatic creation of an SLA agreement (probably
based on templates) has been postponed to IT-2

Table 2. Platform Manager

Module Component Description

Resource

Manage

 Data

Manager

Obsoleted. To be used to enable access to data from sensors from

any node where the application using the component runs.

DataClay will now manage this functionality. DataClay is already in

IT-1.

Service

Manager

Services

Runtime

Allocation

Obsolete. This has been replaced by the COMPSs engine

Allocates available resources to requests to meet security and

privacy rules, cost models, guaranteeing overall optimal resources

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 10

Mapping

usage.

Sends a task to the categorization component to categorize it based

on the attributes from the Lifecycle Manager (e.g., memory,

network, CPU, storage, time Limit, priority)

User

Management

Assessment Component responsible for checking that the mF2C applications

"respect" the sharing model and the profile properties defined by

the device's user

Table 3. Agent Controller

2.2 IT-1 Core Components

Some IT-1 components have been designated as “core components” due to their crucial role in the
validation of the main functionality workflows from WP3 and WP4.

The main mF2C interface and entry point for mF2C users will be the Cloud Infrastructure Management
Interface (CIMI). This component will also provide every other internal component with the interaction
layer for DataClay and the mF2C storage backend.

Both CIMI and DataClay will be deployed on every mF2C agent, alongside all the other active components
highlighted in Figure 1. Besides CIMI, which obviously needs to be reachable from outside the device, the
Lifecycle Manager service will also be exposed and reachable over the network, so that the Lifecycle
Manager components from multiple mF2C agents can communicate directly with each other. Traefik [5] will
be used as an auxiliary core component for doing the reverse proxying amongst the different blocks that
need to be exposed over the network.

All components that are expected to interact with other components are equipped with a REST API which,
unless intentionally exposed, will only be reachable by other blocks within the same local network inside
the device.

The Service Orchestration block will offer the capability to deploy service instances (applications) through
the Lifecycle Manager (with allocation assistance from the Recommender), to aggregate and display the
infrastructure resources through the Landscaper and to create and validate service level agreements (SLAs),
through the SLA Manager. The Distributed Execution Runtime will mostly be composed by COMPSs and will
provide the execution of Java applications in a distributed environment (namely, the mF2C infrastructure).
Finally, the Analytics component from the Telemetry Monitoring block will analyze monitoring data to assist
the Recommender.

On the Agent Controller level, the Resource Manager block will be responsible for the mF2C agent start-up,
registration and authentication, through the Discovery and Identification components. The Categorization
component will then gather a dataset of static and dynamic information on the underlying device, its
attached sensors, and the surrounding fog area. The Service Manager block will provide the catalogue of
existing services that users can start applications from (like an App Store) and finally, the User Manager
block will manage any additional information and provide it to the mF2C users’ profiles and accounts.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 11

Figure 1 Components layout for IT-1

2.3 Conventions

To ease the collaborative development for IT-11, certain programming and organizational conventions have
been adopted:

 Code Versioning: all components are to be hosted in GitHub [6], publicly available;

 IT-1 Deployment Strategy: individual component will be treated as separate services, being
delivered in the form of Docker [7] containers, integrated via Docker Compose. See more details
about the system orchestration in section 4.2;

 Documentation: each component repository shall have the respective technical documentation in
GitHub, while a public general mF2C documentation page [8] shall be set up;

 Components’ Visibility: only component which need inter-agent communication should be visible
from outside the mF2C agent;

1 These conventions will be reassessed after IT-1 and may be relaxed or dropped altogether.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 12

 Port Mappings: to ease and standardize inter-components’ interactions, all components have been
equipped with their own REST API which is exposed to the other components internally within the
Docker network, according to the port mappings defined in Table 4..

Component Port Range Module/Service Proposed Port Service Name

Interface -
CIMI 8201 cimi

Traefik 443 proxy

Service
Orchestrator

46000-46997

Lifecycle Manager 46000 lifecycle

Landscaper 46010 landscaper

Recommender and
Analytics

46020 analytics_engine

SLA Manager 46030 sla-manager

Resource Manager

Discovery 46040 discovery

Policies
46050 (REST)

46051
46052

policies

Identification 46060 identification

CAU Client 46065

Categorization 46070
resource-

categorization

DER
Task Manager

46100 COMPSs
Task Scheduler

Service Manager
Categorization

46200 service-manager
QoS Providing

User Manager

Assessment

46300 user-management Sharing Model

Profiling

Security
Certificate
Authority

51433
52433
53433
51022
52022
53022

CAU Control Area Unit
46400
46410

Table 4. Ports and naming conventions

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 13

3. Workflows update

As the project evolves, the different workflows, presented in previous deliverables describing the whole set
of functionalities envisioned for the mF2C system, are being updated to accommodate enriched features.
Thus, in this section we present the revised workflows as previously foreseen for the IT-1 Reference
Architecture, classified according to the different functionalities.

3.1 Registration and Identification

This workflow shows the initial process when a user (using his/her device) wants to join the mF2C system.
The process includes the registration of the user, the download of the mF2C agent software, as well as the
assignation of a user identification and device identification (userID and deviceID) to be used later for the
security functionality. At this step, the user has not yet joined an mF2C coverage area.

Both the IDKey (also called user ID) and the Device identifier are calculated at the cloud side, the user ID
during the registration and the Device ID once the user has downloaded and started the mF2C Agent for
the first time.

Figure 2 Registration and Identification Workflow

As shown in Figure 2, the registration process starts when the user connects to the mF2C provider webpage
and enters his/her user name, email address and chooses a password.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 14

Figure 3 Registration page screenshot

Once the user is registered, the next times he/she enters in the mF2C provider webpage (for instance, for
downloading the mF2C agent in a different device), he/she only needs to log in with his/her user and
password, as it is shown in Figure 3.

Figure 4 Login page screenshot

Regarding the download file, the system will provide every user with a compose file that includes the agent
requirements and configurations, ports for each mF2C component and a unique IDKey. This IDKey will be
generated as shown in the following formula:

𝐼𝐷𝐾𝑒𝑦 = ℎ𝑎𝑠ℎ512(𝑢𝑠𝑒𝑟𝑒𝑚𝑎𝑖𝑙𝑎𝑑𝑑𝑟𝑒𝑠𝑠)

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 15

Figure 5 Download page screenshot

3.2 Discovery, Authentication (Security) and Categorization

This workflow (Figure 6) describes the process followed by a device (potential mF2C agent) approaching an
mF2C area it may want to join. Certainly, the device is able to run an mF2C agent because it has the mF2C
agent software installed as a result of the previous registration process. The first step for the device is to be
discovered, and to that end, the device starts scanning the area looking for possible leaders. When it
detects the beacons of a leader, a process of authentication involving the agent, the leader, the CAU and
the CA is performed. After this process, and if the authentication is successful, the device becomes an mF2C
agent, able to contribute to the mF2C system or to request the execution of services. It is worth mentioning
that after a successful authentication of a new device, the categorization module is run, the information
about device’s available resources, if any, is stored in the agent’s local database, and finally dataClay is
requested to synchronize this local database with the leader’s database.

In Figure 7 we show one of the steps of the previous workflow, where the agent, after detecting the beacon
(step 3), decodes the information and sends the MAC address of the leader to the policies block. Currently
(IT-1), there is no re-attempt if the process fails, but it should be added in next iteration.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 16

Figure 6 Discovery, authentication and categorization workflow

Figure 7 Screenshot of the discovery module execution

In Figure 8 the discovery, authentication and categorization flow (Figure 6) is executed according to the
workflow communicating with all the modules involved.

Figure 8 Workflow execution

Finally, in Figure 9 we show a screenshot of the categorization module execution, taken after step 10 in the
workflow.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 17

Figure 9 Screenshot of the categorization module execution

3.3 Leader failure

This workflow presents the leader failure scenario, that is when a leader fails (or is not accessible) it must
be replaced by one of the agents acting as backup (assuming a policy exits to select such a backup, or a
designated backup has been pre-selected). In IT-1, the leader is essential to providing the required
functionality, so our options, in increasing order of complexity, are as follows:

1. Accept that a leader can fail - with severe loss of fog functionality, but this may be acceptable in
some cases, e.g. a temporary loss of fog connectivity.

2. Designate a backup leader. Through a process of data transfer (from the failed leader’s database, if
possible) and/or rebuilding its database (re-replicated from the agents’ local database), the backup
takes over.

3. Implement a leader selection process whereby any agent which is capable of taking on the
leadership role, can be elected leader. These can be done through simple processes, which have a
small probability of failure, or more sophisticated but more time-consuming processes.

While all of these options were considered, our primary focus in IT-1 is option 2. The success of this process
involves transferring the aggregated database (fogArea topology in Figure 10) from the leader to the
backup node, as well as the selection of a new backup node (the agent on the right in the figure). Finally,
once the backup becomes the leader it must start sending beacons and aggregating new agents in the area.

In Figure 11, we can see the log from the leader, showing the leader selecting a backup from the topology
and receiving the keepalive protocol from the backup. Once the procedure is done, the backup keeps
watching the leader.

Then, in Figure 12, we disconnect the leader and the backup detects that. The backup then becomes a
Leader and perform some tasks (e.g. loading the topology, sending some internal communication to
blocks...) before selecting another backup. It is important here only to select an agent which is capable of
being a leader2.

In Figure 13 we show how the new backup is selected.

2 For example, if the agent is implemented on a user’s mobile phone, it can run out of battery power or disappear from the
fog; thus an agent running on a mobile phone is not considered capable of being a leader. We could have relied on the backup
process to recover in this scenario, but it seems prudent to minimize the need for recovery.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 18

Figure 10 Leader failure workflow

Figure 11 Screenshot of the backup selection and keepalive reception

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 19

Figure 12 Screenshot of leader disconnection

Figure 13 Screenshot of the new backup selection

3.4 Monitoring

The IT-1 Monitoring workflow (Figure 14, below) is an update to figure 8 in D3.3 [3] (section 3.6, p.22), in
that the Intelligent Instrumentation is pushed to IT-2. The probes would have registered with this module,
and the module would have requested that the probes update their metrics collection frequencies. Each
telemetry probe installed on the device will just register with the Distributed Query Engine for IT-1 to allow
their metrics to be queried from any device in the mF2C cluster.

Figure 14 Monitoring workflow

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 20

3.5 User Profiling

The User Profiling module is responsible for managing the user’s profile properties, and it is part of the User
Management module of the Agent Controller.

The following workflow (Figure 15) presents some minor changes regarding the workflow presented in D3.3
[3]. In this workflow, the Profiling module interacts with CIMI instead of calling directly the database. First,
it is called to initialize a user’s profile. Then, it processes the request parameters, and finally it interacts
with CIMI in order to store this information (profile’s properties).

Figure 15 Profile properties configuration (initialization and update workflow)

3.6 Sharing model

The sharing model module is responsible for the management of the properties that define the device’s
shareable resources.

The initialization workflow describes the process that initializes these properties. It presents some changes
with regards to the workflow described in D3.3 [3]. This (IT-1) workflow skips the calls to the Categorization
module, and replaces the call to the database with a call to CIMI. Thus, after processing the request, this
component calls CIMI to store the information.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 21

Figure 16 Configuration of shareable resources when installing mF2C software

3.7 Service registration and Service Level Agreement-based QoS Analysis

This workflow demonstrates the registration of a new service and the QoS-providing function in the Service
Manager (see Figure 17). When a new service is registered into the mF2C system, and defined in a JSON
format following a specific structure (shown later in Figure 42), the service definition is sent to the service
manager through an interface in the Categorizer. Before to accept or reject the service, the categorizer
updates its local repository of services from CIMI and, then, verifies if the service can be accepted for
registration or rejected in case already exists.

When the Lifecycle Manager issues a request in order to check if a given list of agents can be used to
execute a service, the QoS provider gets the service instance from CIMI by specifying the service instance
id. Then, the QoS provider gets the SLA violations from the SLA Manager using the agreement id that is
specified in the service instance. Similarly, it gets the service from the Categorizer using the service id
specified, also, in the service instance. After making the decision on which agents should be accepted for
the service execution, a modified service instance is returned to the Lifecycle Manager with the updated list
of suitable agents.

The decision whether a certain agent can or cannot be used for a certain service instance is based on the
number of SLA violations occurred in previous executions of that specific service. With this information, the
QoS Provider uses reinforcement learning to allow or block the use of specific agents. The QoS provider
design block in shown in Figure 18.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 22

Figure 17 Service registration in the Service Manager and QoS provider

Figure 18 QoS Provider - Deep Q-learning algorithm design

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 23

In order to determine if the suggested agents by the service instance should be used, the QoS provider uses
the number of service executions and the number of SLA violations, to calculate a ratio that is used as the
input for the Deep Q-learning (DQL) algorithm. Then, it must be decided whether that input is taken for
training or for evaluation (the decision process being described below). In the case of training, the DQL
algorithm will initially get a random output, which determines which agents are accepted. Based on the
output, a reward is calculated following the next function:

𝑟𝑡 = ∑ 𝑦𝑛 (−2𝑥𝑠 + 1) + (1 − 𝑦𝑛)(𝑥𝑠 − 1)

𝑁

𝑛=0

where the N is the total number of agents specified in the service instance, 𝑦𝑛 is 1 when the agent n is
chosen, 0 otherwise, and 𝑥𝑠 is the input ratio. The calculated reward is observed by the network and in case
to be lower than a specific threshold, a new random output is generated and the process is repeated. When
the reward is greater or equal than desired, the output is used to modify the list of allowed agents in the
service instance. In case of evaluation, the QoS provider will directly ask the network about an optimal
output for a specific input. How to decide if an input is taken for the training or for the evaluation is based
on the quantity of the already acquired knowledge in the network. For simplicity in IT-1, this decision is only
based on a certain number of service executions.

While the QoS provider block could use the reward function without the need of using deep learning, the
output would be only determined by that function missing other non-trivial factors like the relation
between the failure of the execution of a service and the agents that were involved. For that reason, the
proposed algorithm can learn in every situation by taking random decisions and help to improve the
decision making in the evaluation period. To be noted, the presented algorithm is only a simplified version
that will be used for testing, considering only the current development of the system. For future releases,
the reward function, the input, the output or how the decision to choose training or evaluation is taken
could change in order to improve the effectiveness of the algorithm or just to adjust the compatibility to
other blocks.

3.8 Lifecycle Management

Once there is an mF2C cluster composed by one or more agents, the Lifecycle Management enters the
scene. This component is responsible for managing the lifecycle of the services executed by the mF2C
platform. This management includes the process of deploying these services in the agents, and all the basic
operations: start, stop and termination of the service.

At this stage of the project (IT-1), the Lifecycle can handle two types of services:

 On one hand, it can manage “dockerized” services (single docker images). This includes images
based on COMPSs (DER). These are single Docker images that include COMPSs and the applications
that will be executed by this distributed runtime.

 On the other hand, it can manage services composed by two or more Docker images configured in
docker-compose deployment files.

Depending on the capabilities of the selected agents and their resources, these services can be deployed
and executed among several agents, or in one agent.

Service initialization

The first workflow in this section shows the submission or initialization of a service in an mF2C cluster. This
workflow (Figure 19) is started when a user wants to submit a service to a set of devices. The Lifecycle of
the agent that gets this request is the responsible for the following workflow.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 24

First, the Lifecycle processes this request (‘submit a service’) and interacts with other mF2C components to
get a list of all the available devices and their resources in the cluster. This task is done by two Platform
Manager components: the Recommender and the Landscaper. The result of the Recommender is a service
recipe, a recommendation of devices where to run a service, based on previous executions of the service
(e.g., 2 medium CPU cores), or the initial service categorization as initial condition. The Landscaper returns
the available devices in the cluster that can satisfy the recipe. At the time of publication of the present
deliverable, the integration of the lifecycle with these two components is not ready. Because of this, the
functionalities of Landscaper and Recommender have been replaced by two functions that simulate the
requests and responses to these components.

Figure 19 Lifecycle Management - Service initialization

Then, the Lifecycle Manager interacts with the QoS Providing, the Profiling and the Sharing Model. The
information and results of these calls are used by the Lifecycle Manager to decide which ones of the agents
and resources obtained from previous calls to Landscaper and Recommender, are the best ones to execute
the service. The result of these operations is a list of the “best” available agents for executing this service.
This list of agents is included in the service instance object that is created during the service initialization
workflow.

The next step of the service initialization workflow consists of the deployment of the service in the selected
agents. If the Lifecycle Manager has to deploy them in other (remote) agents, then it calls the lifecycle
components of these other agents. As a result of this deployment, one or more Docker containers are
created in each of the selected agents. In the case of applications that rely on COMPSs, the result is a
COMPSs (a Distributed Execution Runtime) container running in these agents.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 25

Finally, the Lifecycle Manager starts all these containers (execute service request), and initializes the SLA
agreement of this service instance. At this point, the SLA Management can start evaluating the agreement.
For IT-1, a hand-crafted agreement for the service instance has been previously stored in the SLA
Management by an authorized user. This means that the ID of the agreement must be passed as a
parameter to the creation of the service initialization. The automatic creation of the agreement is intended
for IT-2. In IT-1, we are assuming that the provided service is the execution of a service instance, the service
provider is the mF2C platform and the service client is the application requesting the execution of a service
instance. This means that each service execution uses a different agreement.

Service operation

After a service has been initialized, the lifecycle offers the following methods to manage the service:

 Start a service: this operation starts the service (e.g. the Docker container), and it is included in the
initialization phase. This operation includes a call to CIMI in order to update the status of the
service instance object. And it also includes a call to the SLA Manager to start the SLA Agreement
process.

Figure 20 Start a service

 Stop a service: this operation stops a service, updates the status of the service instance object, and
finally it stops the SLA Agreement process.

Figure 21 Stop a service

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 26

 Execute an application or job: In the case of applications that rely on COMPSs, the Lifecycle
Manager component directly interacts with the Distributed Execution Runtime in order to execute
applications or jobs in it. It requires that the COMPS container (the service) is started and running.
The Lifecycle processes the request parameters and generates a call with the arguments that are
needed by COMPSs in order to execute the job specified in the request.

Figure 22 Service operation

Service termination

The following workflow (Figure 23) describes the termination of a service. When the Lifecycle Manager is
told to terminate a service instance, it first stops all the containers associated with this service instance.
Then it deletes these containers. And finally, the Lifecycle Manager component calls CIMI in order to delete
this service instance and contacts the SLA Management to terminate the agreement.

Figure 23 Lifecycle Management - Service termination

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 27

3.9 Landscaper

Figure 24 is an updated version of Figure 6 of D4.3 [4]. The update reflects minor changes in where the
Landscaper will source the metadata required to generate the landscape model. Information about the
devices is queried by the ResourceManager of the Agent Controller and stored in the Device class in
DataClay. Lifecycle Manager will return a list of ServiceInstance objects for all services currently deployed.
And finally, the COMPSs system is queried for information about the deployment configuration for each
service instance. This metadata is then used to generate the Landscape model on start-up and stored in the
database.

Figure 24 Landscaper start

Updating the Landscape Model:

This set of interactions has not changed from the original design. The REST API of the Landscaper has an
update method that the Resource Manager’s Discovery module will call when a device is added or
removed. Similarly, Lifecycle Manager will call the update method when a new service is deployed.

It is possible that this functionality will be ported to a Message Queue component for IT-2 which would
support using a Publish/Subscribe model to trigger and respond to these events.

3.10 Evaluate an SLA Agreement

Once a service is being executed, the service is evaluated to check whether it satisfies the expected
performance. The expected service level is defined in the Service Level Agreement, a document that
describes the parties that take part in the agreement and the service levels to be guaranteed. For IT-1, the
service levels are related to the execution time of the operations provided by a service instance. For
example, a service provides a set of applications and the agreement may set the maximum execution time
for some of these applications. Every time the execution time is not fulfilled, a violation is generated. These
violations are used later by the QoS Provisioning component to provide better recommendations about the
agents to be used on next executions of the same service. An example of an agreement for IT-1 is shown in
Figure 25, while the sequence diagram that details the evaluation process is shown in Figure 26. The
evaluation process is executed periodically (e.g., every minute) and gets the monitoring information stored
by the "Monitoring Agents" (in IT-1, the execution time records are stored by the DER component). Using

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 28

this information, all of the relevant agreement terms are checked and violations generated on non-
fulfilment.

Figure 25 Example of SLA agreement

Figure 26 SLA Management – Evaluate agreement

3.11 Distributed Execution Runtime

The implementation of the DER component includes a Start App method that requires a list of resources
where to execute the tasks. The resources can be local or remote; in the latter case the task is sent to a
remote agent using the Execute Task method.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 29

The implementation of the Update Resources functionalities has been pushed to IT-2.

Figure 27 Distributed Execution Runtime – Start application

To start the execution of an application, a set of DER instances need to be deployed. One of these instances
acts as master, and possibly also as worker, while the other instances are used as workers. Figure 28
depicts the deployment of a master (upper frame) and a worker instance. When the Start Application
method is invoked, the list of resources is passed to the master DER.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 30

Figure 28 Deployment of DER

Figure 29 depicts the execution of an application (logs on the upper image) that executes three tasks. On

the second part of the figure, the tasks are executed by the worker instance of the DER.

Appendix 1 contains the content of the Start Application request.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 31

Figure 29 Execution of an application

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 32

3.12 Data Management

This section describes the functionalities of the Data Management component. For the IT-1 integration, the
Data Management is not directly exposed to the rest of components, but is accessed through the REST-
based interface provided by CIMI. Consequently, we have adapted the naming and external behavior of the
different functionalities offered by the Data Management component to the CRUD (CREATE, READ,
UPDATE, DELETE) data management operations. As explained in previous deliverables, the Data
Management component relies on dataClay [9] in order to perform its functions, so that replication and
synchronization of data between a device and its leader behaves according to the policies defined in D3.5
[10].

We provide workflows for each of the data management operations exposed by CIMI: CREATE, READ,
UPDATE, DELETE, and QUERY. In all of them, for the sake of clarity, we omit the description of the error
cases, such as trying to create an object that already exists, or trying to modify an object that does not
exist. These cases are covered in the implementation, as will be shown in the corresponding tests.

Unless stated otherwise, all interactions happen locally within an agent, in order to reduce communication
between agents as much as possible.

The first workflow corresponds to the storage of a new resource received from CIMI, according to a
previous request from any mF2C component contacting CIMI.

Figure 30 Data Management – Create

When a CREATE request is received from CIMI, the resource data in the form of a JSON string is
transformed into an object to be stored and managed by dataClay, representing the same CIMI resource.
The object is stored with the ‘id’ as an alias, which identifies it and provides direct access to the object. The
object is also added to its corresponding collection of resources, i.e. a data structure containing all the
resources of its same type. This data structure has been implemented in dataClay according to CIMI’s
access needs (i.e. accessing an object by its id), and will allow components to perform queries (i.e. filtering
the objects that satisfy certain conditions), as will be seen in the corresponding workflow.

The next workflow responds to a request by identifier, which returns all the data contained in the object
with the specified ‘id’.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 33

Figure 31 Data Management – Read

When a READ request is received from CIMI the reference to the object with ‘id’ as alias is obtained from
dataClay. The object data is then obtained using this reference (‘obj’ in Figure 31), and serialize it as a JSON
string following the CIMI resource specification corresponding to the resource type. Finally, this data is
returned to CIMI.

The following workflow illustrates the update operation.

Figure 32 Data Management – Update

Upon an UPDATE request, the corresponding object reference is obtained from the local dataClay as in the
previous workflow. The data to be updated is passed to a method that modifies the object locally, and also
synchronizes the changes to the replica in the leader, if any. For IT-1, this synchronization follows a strong
consistency model, that is, the replica in the leader is updated as soon as the local replica changes.
However, more flexible consistency models will be implemented for IT-2 if needed, taking advantage of
dataClay’s customizable consistency policies, which may be different for different types of data, or different
clients (a device may be temporarily disconnected from the fog).

The diagram for the delete operation is shown in the next figure.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 34

Figure 33 Data Management – Delete

To implement the DELETE operation, we delete in dataClay the alias of the object, and we also remove the
corresponding entry from its resource collection. To do this, we first need to get a reference to the
collection, and then remove the entry corresponding to the id. After the deletion, the object has no
reference that points to it, which makes it inaccessible. Thus, the garbage collector in dataClay will
effectively remove the object when the garbage collector is activated.

Figure 34 Data Management – Query

Finally, we have the diagram for the QUERY operation, which, from a collection of objects of the same
‘type’ (i.e. the collection of devices, of users, of services…), returns those objects that satisfy a certain
condition and to which the user that issued the request has access. This has been implemented by

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 35

providing in dataClay a functionality that allows the Data Management component to filter a collection of
objects according to an ‘expression’, with the access permissions stored in the data objects themselves.
Thus, the first step is to generate an extended query expression that also includes the permissions check
taking into account the user that executes the query, and his role. Then, the reference to the collection of
objects belonging to ‘type’ is retrieved, and the extended query (the original ‘expression’ in conjunction
with the acl check) is executed on it by invoking the filter method on the collection. The objects returned as
a result, i.e. those objects that satisfy the initial query conditions and that are accessible to the user, are
serialized into the JSON format expected by CIMI.

We have integrated the testing of all the Data Management workflows into a single test application that
performs a sequence of CRUD operations. This test application has been successfully executed both in a
regular laptop, as well as in a Raspberry Pi 3, with the Data Management component consuming around
10% of its 1 Gb RAM.

The application starts by creating a set of resources, reading their data from a set of JSON files provided as
input. These files have the same format as the ones that would be received from CIMI.

Figure 35 Data Management – Tests (part 1)

As can be seen in the output shown in Figure 35, under the title “CREATE operations”, two resources of
type “Device”, and a resource of type “DeviceDynamic” are created and stored. The data contained in the
new objects is shown as an unordered set of key-value pairs, where the key is the name of the property,
and the value is the data it contains. For the sake of clarity, we are giving values only to a subset of

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 36

properties, since this does not affect the test results. In particular, we have created the Devices with
identifiers “device/12345” and “device/54321”, and also the DeviceDynamic with identifier “device-
dynamic/12345”. All these devices have been created by User1, who does not have an ADMIN role. A set of
READ operations, that request to the database an object by its identifier, are executed afterwards. We
request for Device “device/12345” and also for the “device-dynamic/12345”, and return all the data they
contain in the form of a JSON document to be returned to the user as a result of his request. The test
continues in next figure, were we show the UPDATE, QUERY and DELETE operations. We UPDATE a couple
of properties of “device/12345”, and read the device by using the previous operation to show that the
values in “storage” and “os” have been correctly modified.

Figure 36 Data Management – Tests (part 2)

Now we perform some QUERY operations, testing with different permissions. As defined by CIMI, each
resource has an owner, as well as a set of users/roles that can access it. For instance, when creating the
devices, we have stated that the first one has been created by User1, who is a regular user, and the second
one by User2, who has ADMIN role. Both devices can be accessed by any user with the ADMIN role,
regardless of who created them, as happens with all resources in the mF2C platform. The first query is
made by User1, who is the owner of the resources and asks for the devices with “os=Windows”. Only
“device/12345” is correctly returned as a result of the query, since it’s the only one that satisfies the
condition, and is also accessible by User1. Afterwards we can see that if a user with ADMIN role (User2)
performs the same query, the result is the same, since we have established that all resources can be
accessed by any user with this role. Finally we DELETE “device/12345” and see that if we request to read it
by id, an error occurs, as expected. Also, if we list all the resources by issuing an empty query, then the
deleted resource is not shown.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 37

3.13 Analytics

The implementation of Service Analysis and the characterization of services have not changed much. For a
previously deployed service, a subgraph is queried from the Landscaper and the associated telemetry of
each of the elements of the graph queried. A characterization of that service is generated and the initial
recipe used for deployment is updated in the Service Manager component.

Figure 37 Service characterization

The real-time Service Performance analysis follows the same flow as Figure 37 above, with the exception
that the metrics being queried are the latest and most current. The output of the task is to update the
recipe so Lifecycle Manager is notified that a newer version of the recipe is available if it wants to issue
service replacement.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 38

4. PoC Description

This section introduces the first prototype delivered within the mF2C project, in terms of a PoC that is
validated and evaluated as a result of the whole IT-1 period. As mentioned in the previous section for the
workflows, the set of functionalities to be included in the IT-1 PoC has evolved as the project progressed, to
adopt new functionalities, and thus improving the IT-1 PoC.

The IT-1 PoC may be described as two main conceptual components, the first referring to the set of
assumptions adopted in IT-1 and the second referring to the set of functionalities included in IT-1.

Assumptions for IT-1

All assumptions and considerations for IT-1 are listed below. Certainly, IT-2 will cover the missing aspects as
well as new aspects derived from practical experiences. We must observe that the main objective for IT-1 is
to demonstrate the integration of the different elements of the mF2C architecture, with no need to
evaluate performance characteristics or very complex systems or algorithms. Moreover, it is expected that
the process of blocks integration along with the trials done to validate the first version of the architecture
will drive improvements of the architecture as well as other fine tunings in IT-2.

 Services are executed from the mF2C dashboard

 The dashboard includes the portfolio of services categorized into different categories (IoT, data,
smart cities, health…). Dashboard development is aligned with the definition of a service in CIMI,
creating a JSON file compatible with the Service Manager

 For the sake of simplicity, in IT-1 the mF2C architecture considers three layers (cloud/fog/edge). All
devices included in these layers deploy the mF2C Agent (note that cloud services are not devices
and need not run agents.)

 There is no horizontal communication (between devices in the same layer) among devices at
control level. The communication is multilayer and vertical.

 There is one leader and one backup selected in each fog area

 There is a limited set of categories for resources/services

 The processes of leader and backup selection need only to be very basic

 Clustering policy set manually at bootstrap.

 All services and mF2C functionalities fill a single container each

 A "recipe" = (#cores, core type, storage, #IoT need, IoT type)

 The recommender matches the service characteristics (obtained by the Service Categorization
module) as well as the analytics from previous executions (Analytics module) to generate the
Recipe

 There is neither allocation nor mapping at the Agent Controller

 mF2C is a software-only agent (no specialized hardware) downloaded from the mF2C (web service)
and installed at the registration process

 No QoS enforcing will be done by the QoS providing block. This block in IT-1 feeds the Lifecycle
Manager with information about resources’ suitability to execute a specific service, based on the
SLA violation history received from the SLA management.

 The SLA is set manually.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 39

 The dynamic resources information is obtained from COMPSs notifying the Lifecycle Manager,
when a task is done and the latter reporting to dataClay. The categorization module will also enrich
this information.

 The sharing block includes (cores, memory, max apps, GPS, battery limit, BW, storage)

 Device categorization includes:

 Hardware: the device is static (e.g. run after the discovery process)

 Hardware: the device is dynamic (run according to a certain policy)

 IoT: the device is manually introduced

 COMPSs does not change the resources to be used to execute a task from those requested in the
recipe

 The SLA management block detects violations

 Application data may be stored in dataClay or in its own database

 The set of IDs (user and devices) are generated at cloud (mF2C cloud provider) at registration time

 A leader failure will not occur during app execution

 The interface with the mF2C agent is managed by CIMI.

Functionalities for IT-1:

The set of functionalities included in the IT-1 PoC matches the set of workflows described in the earlier
sections. The functionalities involved in IT-1 are specified in section 2.2.

As described in the assumptions, the interface with the mF2C agent is managed by CIMI.

 It is worth noticing that the set of blocks included in IT-1 are sufficient to make the system work and thus
to validate the use cases included in the project.

4.1 General Functionality Demonstration

This section describes the strategy used to demonstrate and thus validate the proposed PoC. It must be
highlighted that most of the different functionalities and technical contributions have been individually
demonstrated and validated through the different scientific publications the consortium has already
delivered, or simply by being tested independently. Therefore, in this deliverable we describe the strategy
proposed to demonstrate IT-1 integration (as mentioned above IT-1 focuses on integration rather than on
optimization).

In IT-1, the demonstration strategy is divided into two main categories:

 Individual or combined mF2C functionalities: Some of the mF2C functionalities are demonstrated
independently of the execution of an mF2C service. For the sake of illustration, the tested
functionalities are: i) the registration process (both of a user and also of a new mF2C service); ii) the
discovery of a leader by an agent in the vicinity and mutual authentication between them, and; iii)
the failure of a leader. It is worth mentioning that although identified as individual functionalities,
they are not deployed as a unique feature, as shown in the set of workflows in section 3.

 Execution of mF2C services: The mF2C agent will be demonstrated in the three different use cases
included in the project. Since not all functionalities will be deployed in IT-1 for the three proposed
use cases, we have also proposed an additional use case, referred to as “Hello world”, aimed at
representing a generic mF2C service, using all mF2C functionalities linked to the execution of a
service.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 40

4.1.1 Registration, Discovery and Leader failure

This section refers to the different set of functionalities individually demonstrated in IT-1, which

corresponds to the workflows: Registration, Discovery and authentication and Leader Failure.

4.1.1.1. Registration

As described above, the first functionality to be demonstrated is the registration process for both users and
services (as a part of the “Hello World” use case). This functionality is deployed in the testbed located at
the UPC lab, using the mF2C dashboard and a device willing to get registered.

User registration:

A user can register a device with mF2C software pre-installed by connecting to the mF2C dashboard offered
by an mF2C provider and filling in the required information. During the registration process the user gets
specific credentials (userID and device ID), so the device can comply with the security policy later required
for the discovery process. In the user registration process the following mF2C characteristics (matching the
mF2C functional blocks) are shown:

 Security

 User Identification (ID Key)

 Device Identification (Device ID)

 mF2C agent installation on a device

 Initialization of the User Profile (Profiling)

Service registration:

The mF2C provider offers services to potential mF2C clients through a service catalogue available through
the mF2C frontend. In this part, we show the procedure to register a new service in the catalogue. This
includes the service registration itself but also a preliminary service categorization, to facilitate the tasks of
the full service categorization and recommender blocks. The demonstration process is based on the use
case that a service developer wants to upload a new service to the mF2C services catalogue. To this end the
developer will upload the new service in the system and also provide the main requirements for running
the service (such as CPU speed or IoT types and needs etc.), which will help the full service categorization
later on. This process illustrates the following mF2C characteristics:

 Service categorization by the service developer

 Service uploaded to the service catalogue

 mF2C service catalogue

4.1.1.2. Discovery and Authentication

This functionality, as discussed earlier, refers to the process where a device becomes aware of the
existence of a nearby mF2C leader. This discovery process assumes a Wi-Fi scenario in IT1, where the
user/device scans the beacons broadcast by the leader within its proximity. The beacon message, a kind of
welcome message, contains the necessary mF2C information for the user/device to kick off the joining
process.

The mutual authentication process allows the leader to know if the agent in the user/device is a
trustworthy, and, vice versa, allows the device to know if the leader is trustworthy. The authentication
process uses X.509 certificates as credentials; these are issued by an mF2C CA (Certification Authority)
residing in the cloud. A fog-based CAU (Control Area Unit [11]) acts as a gateway to the cloud CA, as devices
connecting to the fog would not have access directly to the cloud, let alone the Internet as a whole. The

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 41

agent requests a certificate for the fog area that it wants to join by sending a CSR (Certificate Signing
Request), generated by the local CAU Client, to a regional CAU with the necessary information identifying
the target leader agent and itself. The CAU forwards the CSR to the CA and verifies the requestor's identity
with the target leader agent’s CAU. The signed certificate from the CA is returned via the regional CAU to
the agent. To complete the authentication process, the new agent exchanges credentials with the agent
leader through a TLS (Transport Layer Security) handshake.

To be precise, there are two CAs: one for issuing infrastructure certificates, which are long-lived (1-3 years)
and can be revoked, and another for issuing the certificates to the agents. In IT-1, certificates for agents
should be short-lived (on the order of a week, say), to avoid having to implement a revocation process. The
initial trust-anchor distribution is achieved by including the CA certificate in the distribution of the mF2C
agent software (i.e. the agent has it prior to connecting to the fog, so can validate the leader’s identity and
that of the CAU.)

To summarize, the Discovery and authentication processes demonstrate:

 A user/device is recruited by a leader in a completely secure process, initiated through the
welcome beacon messages

 Secure interactions between the distributed local CAU client, regional and leader agent CAUs and
cloud CA.

 Implementation of a trusted PKI (Public Key Infrastructure) within a fog2cloud environment.

4.1.1.3. Leader Failure

This functionality refers to the handover process when a leader goes down or gets inaccessible. As defined
in the workflow (see Figure 10), the leader is a key component of the mF2C fog, hence the architecture is
designed to keep leaders alive against common eventualities such as intermittent network connections,
etc. In practice, we cannot possibly cater to every single situation that could bring a leader agent down.
Hence, mF2C builds in a mitigation action based on selecting a backup leader when the main leader is
chosen during the selection process, even if, in IT-1, the process is fairly simplistic. Indeed, we have already
experimented with alternative approaches like setting flags for device availability, using a first fit policy
linked for example to the lowest IPs in the linked address block, and using other simple characteristics). In
the short term, we consider using a backup leader a good compromise to deal with potential leader
failures. The process relies on dumping the current state of the running fog instance (i.e. the leader’s
database) to the backup leader when the leader fails; the alternative would be to rebuild the metadata
from the agents in the leader’s domain.

In short, the leader failure demonstrator shows how information is synchronized from the leader to the
backup leader to guarantee an efficient handover process with minimal disruption to the running fog
instance.

The backup leader periodically check the leader agent’s status by keep-alive pings and when it detects a
break in the keep-alive communication, the backup leader becomes the new leader and a new backup is
simultaneously selected. The process shows how the system reacts and how information is synchronized.

4.2 Use Cases
4.2.1 Use Case 1

The first use case, emergency management, is an alarm manager for smart infrastructure. The main
services of this use case will be (a) decision-making according to an inclination sensor that monitors
emergencies in infrastructures and (b) to provide Emergency Situation Management in a Smart City context
by processing information and triggering the intervention of the relevant emergency services. Several
services are combined, using both micro agents (such as LoadSensing and the Jammer Detector) and smart

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 42

agents (Gateway). LoadSensing is a commercial solution proposed by Worldsensing for connecting and
wirelessly monitoring infrastructures in remote locations. Construction and mining companies and
operators of bridges, tunnels, dams, railways and many other inaccessible assets thus have access to this
information, and real-time insights enables operators to anticipate needs, manage their workforce,
diminish risks, and even prevent disasters. LoadSensing allows services to monitor the correct behavior of
the infrastructure. If a sensor reports a value higher than an alarm threshold, the alarm manager will report
an emergency situation to the cloud software that will trigger its alert methods. Furthermore, in order to
improve the solution’s security, the alarm manager is able to detect whether the LoadSensing and the
Gateway are communicating (using a LoRa interface) with each other. If lack of communication is detected,
the Jammer detector is automatically powered up and configured to detect jammers in the channel used
for the LoRa communication.

Figure 38 LoadSensing for Infrastructure monitoring

The use case consists in analysing sensor measurements. The tilt-meter sends inclination information to the
Gateway, which relays this information to the cloud. This data is both analysed on the Gateway (on site)
and on the cloud, where it is compared to the pre-established thresholds. If a critical situation is detected,
an alarm service is notified and the alert protocols are started. In addition, if communication between tilt-
meters and the Gateway is lost, the Jammer detection service is activated to detect potential attacks to the
solution.

The data flow in the use case is the following:

 LoadSensing to Gateway: The LoadSensing gets sensors information and sends this information to
the Gateway (via LoRa), which gets this information and stores it. It is also possible that the
Gateway sends configuration messages (via LoRa) to the LoadSensing to set the desired
characteristics. This is a periodical data flow.

 Jammer detector to Gateway: The multi-interface Gateway passes the parameters needed by the
Jammer detector (over Ethernet), in order that the latter may locate a potential jammer easily (for
example the frequency and the channel used by the LoadSensing tilt-meter that is having
problems). The Jammer detector handles all of the SDR (Software Defined Radio) information and
transmits (over Ethernet) the final decision (whether a jammer has been detected or not) to the
Gateway.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 43

 If the information provided by LoadSensing is identified as an alert and does not come from a
communication issue, an emergency message is triggered to activate human the intervention. The
relevant emergency services are started in order to get a quick response to the critical situation.

Regarding possible loss of communication alarm cases, there are two different data flows:

 When messages are not received from the LoadSensing, the Jammer detector is powered on and a
jammer is not detected, an alarm is given that there is a problem with the LoadSensing datalogger
but that it is not an attack.

 When messages are not received from the LoadSensing, the Jammer detector is powered on and a
jammer is detected in the LoRa bandwidth. An alarm is raised because a jammer is blocking
communication between LoadSensing datalogger and the gateway.

4.2.2 Use Case 2

For UC2, XLAB is developing a Smart Boat application for gathering, processing and sharing boat sensor or
other data on the fog level. The Smart Boat concept enhances the boat monitoring experience provided by
projects such as Sentinel Marine Solutions, which UC2 uses as sensor hubs besides directly connected
sensors. The core concept for the enhancements on the fog level is the creation of fog fleets, which are
groups of boats that can communicate between each other when in range of LoRa or Wi-Fi channels. The
numerous enhancements enabled by it are grouped into 5 major user functionalities of the planned end
product, where only 2 will be demonstrated for IT-1:

 Continuous Boat Monitoring

 Sensor Control

Both boat monitoring and sensor control is about providing the user with fresh boat data and control of
sensors no matter the location. They also include alert systems for user-set limits, e.g. low fuel reserves.
Both functionalities are already available in most hub sensors, but UC2 adds to them a fog level of
execution in the fleet. Anomaly Detection and Data Plan Sharing on the other hand are only possible due to
the concept of fog fleets. The former processes data provided by the sensors in the fleet to compare the
values with local values to detect anomalies with either the boat or the sensor. The latter uses the fog
channel between the boats, if access has been granted, to relay data to the cloud from another boat that is
low on available data transfers or out of range of mobile connections. The last enhancement, Online
Docking & Anchoring Reservation, is for simplifying the bureaucracy of docking and anchoring beforehand,
while also providing an authentication system in the harbor. The true value of all functionalities is seen
when you consider the end users of the application. There are two types of users inside Smart Boat
application: owners and users. The distinction is notable in case of charter fleets, where we have one
owner renting their charter boat/s to (multiple) users (at the same time).

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 44

Figure 39 Use case 2 system architecture

Figure 39 presents Smart Boat deployment including multiple layers in the F2C scheme, depending on the
number sensor hubs sequentially linked. Top layer (Layer 0) is a cloud, based on OpenStack, containing the
mF2C agent with the UC2 application. The mF2C agent and the UC2 application are also present in the fog
layer below (Layer 1), where the fog fleets are positioned. Layers from 2 downward contain the IoT devices
that can be either sensors that directly communicate with the upper layer or sensor hubs that collect data
from sensors or hubs in the lower layer and report to the upper layer. From the application aspect, layer 2
is the last one to take into account since lower layers are handled by the hubs. The demo will use the
Sentinel Marine Solutions as a sensor hub. In final deployment, most of the fog processing will be done by a
RaspberryPi3 device [12]. To avoid premature optimization of the mF2C agent in IT-1, the fog layer will be
backed up with laptop devices, so that the more complex requirements of the mF2C agent will be
calculated on a more powerful device that communicates with the RaspberryPi3 that manages the fog fleet
and sensor data collection and control. The demo will have two RaspberryPi3 enhanced with LoRa modules
and LED lights for fog fleet simulation and hardware status reporting. For actual user interaction there are
Android and WEB applications, which can communicate either with the cloud application or local fog
applications using HTTP(2) requests for communications.

The demo data flows are:

 The Bluetooth bridge application on a RaspberryPi3 acts as a listener for the sensor hub or sensor
connected to the device and reports the current sensor values to the Smart Boat app on the laptop.

 The communication between components of the UC2 application is handled via gRPC [13] HTTP2
requests, which also simplifies the division of components between the devices of the demo.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 45

 The UC2 application main/central component stores the values in a local database, which we use as
cache, and later synchronize to the cloud database.

 User interaction is done via a WEB or Android app locally or via cloud. Depending on whether the
end device is connected to the local laptop or to the cloud, the corresponding (local or cloud)
database is used to present the measurement history.

 Alternatively, the user sends a control signal via the GUI to the laptop, which transmits it to the
RaspberryPi3, which, depending on the type of signal, reacts accordingly. E.g. a change in led lights
is requested, which will trigger the corresponding LED component via gRPC on the RaspberryPi3.

 For functionalities such as anomaly detection, we do not need to access the cloud, but want to use
the LoRa communication channel to retrieve data from local caches of each boat in the fog fleet.
Similarly, as with user interactions, a request is send to a second RaspberryPi3 from the application
in the laptop that uses the LoRa component of first RaspberryPi3 via gRPC. The second
RaspberryPi3 sends a request to the main component on the laptop for the data of the second
boat; the data is delivered via the LoRa component back to the application of the first boat. The
main component of the first boat compares the value (which should be an average in multiple
boats in fleet in actual environment) and reports an anomaly if the difference is too big.

4.2.3 Use Case 3

The Use case 3 is under development in the Engineering Labs, and will be moved to the Cagliari Elmas
Airport next year. In the final configuration, the fog elements will be positioned in the field in order to
create a grid for Wi-Fi coverage.

The current environment that will support the IT-1 review demo in Brussels is an adaptation of the
environment into which UC3 will ultimately be deployed, where an open space on the Engineering campus
is used to simulate shops and other points of interest (PoIs), and airport events are simulated. Due to the
unavailability of the mF2C agent in RaspberryPi, in IT-1, the system architecture has been adapted and is
composed of the following elements:

 A cloud layer, based on an OpenStack instance, wire-connected with the fog layers, that provide
scalable computing power for machine learning algorithms used for the recommendation system;

 A first fog layer, which acts as aggregator, based on a NuvlaBox mini [14], equipped with 8 GB RAM,
that provides real-time computing and storage resources to the edge elements;

 A second fog layer, with a laptop with 4 GB RAM running the mF2C agent that interoperates with
the NuvlaBox, and acts as worker node, providing processing, resource and security capabilities to
the IoT layer;

 The edge layer with six RaspberryPi3 with 1 GB RAM, without the mF2C agent, each of which acts
as access element and provides session management and fast response to the edge devices;

 Android smartphones, used by the end-users, connected to the access nodes with Wi-Fi, and using
an android app to be engaged with the system; in this phase, they are used as data generator.

The mF2C agent runs in all Cloud and Fog elements; this is not currently supported on RaspberryPi and
android smartphones, and will be released for IT-2. The android app to be installed in the smartphone
implements security and privacy features to preserve managed data both at rest and in transit, with a
security level comparable to the ones adopted by the mF2C agent.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 46

Figure 40 Use Case 3 system architecture

At the application level, the following business processes have been identified and are under development:

 App installation and device registration

 Position calculation, check for PoIs’ proximity and user notification

 Position data sync in fog and cloud

 Airport events notification (flight call, but also invitation to move closer to the gate)

 Reporting (real-time and history) with the dashboard

 Management of PoI and promotions (in case of shops)

 Filtering and behavior calculation in positions streams (IT-2)

 Recommendations generation based on user similarities (and recalculations with data caching) (IT-
2)

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 47

4.3 Service Catalogue – The Hello World

For the users that have been logged in the mF2C system, with their credentials validated, there is an
additional option that allows them to register their services, as mentioned in Section 4.1.1.1. After login, a
user will be able to register a new service with defined parameters based on its specific service
requirements. The form for the definition of the specific service requirements in the mF2C provider
webpage is shown in Figure 41.

Figure 41 Registration of a new service

Beside description and the name of its service, the user can define the type of executable and a port that
will be used. The other set of parameters, that include CPU, memory, storage as well as the information
about the existence of certain sensors that are necessary for running a specific service, allow for services to
be categorized later. For example, a user can specify whether their service has ‘high’, ‘medium’ or ‘low’
CPU, memory and storage requirements. At the moment, based on the three mF2C use cases, possible
sensors include inclinometer, temperature sensor, jammer detector, location (GPS sensor), battery level
sensor, door and pump sensor, accelerometer, humidity sensor, air pressure sensor and IR motion sensor.
This list can be expanded later.

After defining the parameters, the user will click the submit button, which generates a JSON file that will be
submitted to the mF2C system through CIMI. The example of JSON for a ‘Hello World’ service is shown in
Figure 42.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 48

Figure 42 Generated JSON for a ‘Hello World’ service example

In parallel with the submission of the service to the mF2C system, these services will be uploaded to the
mF2C service catalogue. The list of the services from the catalogue for each registered user will be different
and will depend on service ACLs. This functionality enables the users to access a number of already defined
services and launch them from the catalogue, and not just register a new service. At the moment Figure 43
demonstrates a simple example of a service catalogue without taking into account a specific user. This
example includes a catalogue that consists of the ‘Hello World’ service and predefined use case services
‘Emergency Management System’, ‘Smart Boats Application’ and ‘Airport Location System’.

Figure 43 Service Catalogue

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 49

5. mF2C in IT-1

5.1 Testbeds
5.1.1 UPC-WoS Testbed

The testbed provided by UPC and Worldsensing will be used to validate the use case 1 (emergency
management). This service is developed in a Smart City scenario with mF2C capacity (Figure 44), where
logically we consider that there is an agent in the cloud, two leader agents in charge of two different areas
(clusters) with other agents and/or IoT devices within these areas.

Figure 44 Topology of use case 1

The set of agents that make up the topology has a set of IoT devices associated with it that allow it to
respond to an emergency service. The emergency service is emulated in the testbed shown in Figure 45,
where 3 buildings are shown (red, pink and blue boxes):

 The sensorized building is to be monitored (red one in Figure 5.2).

 Hospital with the ambulance inside (pink one in Figure 5.2).

 Fire station with the fire engine inside (blue one in Figure 5.2).

Additionally, other elements are illustrated, such as:

 Roads and streets.

 Traffic lights.

In particular, the elements that will participate in this case are:

 Temperature and humidity sensor installed in the sensorized building.

 Jammer detector installed in (or close to) the sensorized building.

 Actuator installed in a traffic light → to change the status green/red.

 Actuator installed in a fire engine → to start/stop the fire engine.

 Actuator installed in an ambulance → to start/stop the ambulance.

In this scenario, we will consider two types of actions:

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 50

 Action produced by a Jammer attack that interrupts the connection between the inclinometer and
the data reception center.

 Action produced by a seismic movement that causes a collapse of the building.

Figure 45 CRAAX Testbed

The two areas of action, shown in Figure 44, represent two separated zones of a Smart City, as shown in
Figure 46.

Figure 46 Infrastructure of use case 1

In the first area, we will have the part of the emergency service that responds to a trigger set off by an
alarm event and the devices in this area are:

 Leader (laptop)

 Agent 1 (laptop)→ connected to an ambulance and to a fire engine.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 51

 Agent 2 (laptop)→ to be used as a computation element.

The event detection itself is located in the second area 2, where the activation and the triggering of the
emergency will take place due to the excessive inclination of a building produced by a seismic movement. It
will consist of a leader and different IoTs connected to the leader through a gateway,

 Leader (laptop) -> connected to a gateway

 The Gateway is also connected:

 through wire to a Jammer detector.

 through LoRa to an inclinometer, which detects the seismic movement.

 through wire to a temperature sensor. In IT-2 we will use this sensor to detect also a fire in the
building.

The two areas contain Agents in the Fog layer and are interconnected through the Cloud.

At the time of writing, the group of devices working together could be classified in two blocks:

LoadSensing’s group

 Loadsensing’s Inclinometer (Edge)

 LoadSensing (Edge/L2 LW Fog)

 Fog Kerlink Gateway (L1 Fog)

Jammer Detector’s group:

 Jammer Detector’s HackRf (Edge)

 Jammer Detector’s ODroid C2 (L2 Fog)

 Cloud Server

5.1.2 XLAB Testbed

The Smart Boat’s testbed consists of a set of hardware modules that mimic a small boat fleet and the fog
and cloud layer above this. The devices intentionally are not mounted in a specific environment, as the
tests require them to be a mobile set. A mobile set consists of:

 Sentinel Boat Monitor

 Raspberry PI

 LoRa module (optional)

 3G/4G gateway (optional)

 Laptop (IT1 Only)

The Cloud part will be deployed on private cloud based on OpenStack.

5.1.3 ENG Testbed

The development of the Use Case3 infrastructure has been supported by a preliminary system environment
in Engineering Labs, and will be moved later to the Cagliari Elmas Airport. This is based on Openstack for
the cloud layer, one NuvlaBox mini (as fog leader/aggregator) and one Laptop HP (as fog worker). In the
edge, 6 RaspberryPi are used for access management and position tracking of smartphones used by end-
users.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 52

The adaptations are related to the following points:

 Some open spaces are used as the airport lounge, where we simulate shops and other PoIs (Points
of Interest);

 Airport events are simulated. The official timetable of the airport has been taken to create the full
list of events related to departures with relevant events like open check-in, assign gate, call flight,
last call, close flight/gate.

5.2 Orchestration and Installation

For IT-1, the mF2C system will be deployed through Docker Compose, having each component running as a
service in its own container. By default, Docker provides enough portability, isolation, security and
flexibility to enable the collaborative development of a modular architecture, where every component can
execute on its own, without any core dependencies. At the same time, by using Docker, it will be possible
to prove the IT-1 functionalities on multiple device types, without having to specifically build architecture
specific components.

One of the downsides of such an approach will be resource usage, where the containers will not be sharing
application resources like JVM, thus resulting in a final non-optimized IT-1 mF2C System. Optimization will
not be targeted in IT-1.

The installation of the mF2C System will be provided through a single Docker Compose YAML file (version
3), which registered users shall download and install by running the command docker-compose up.

This YAML file will have one service definition per component, plus additional auxiliary services like Traefik.
All the services will by default be deployed in the same Docker network, which allows the different
components to find each other by name, while providing isolation from any other non-mF2C containers and
system processes that might be running in the host device.

The requirements for deploying the IT-1 mF2C system are:

 Docker CE 17.12.0+

 Docker Compose 1.18.0+

 2GB of RAM or more

5.3 Security Tests
5.3.1 Security test validation

In addition to validating the use cases, it makes sense to also validate the security testing methodologies,
and, of course, the tests may usefully uncover unknown security holes.

The scope of these security tests has been restricted to the individual components, and obviously only
those that were available for testing. The Use Case applications will be tested separately and the results
documented in the future deliverable D5.3. For further background information on the planned security
tests, the reader is referred to D2.4 [15]; for details of the actual tests, the reader is referred to the
appendices.

As regards the software, for IT-1 the main goal is to demonstrate the feasibility of the foreseen components
and functionalities of the mF2C system. Security testing of the software components therefore has no
sense of “fail” because components and security are in a process of development. On the other hand there
is a sense of “pass” in that it is considered already suitable for use, potentially even in a hostile
environment.

The expected outcome of the security test is therefore:

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 53

 Discovery of known security vulnerabilities, because:

o The protection is out of scope for IT-1, or

o The security feature has not been implemented yet.

 Potential discovery of unknown or unexpected vulnerabilities.

 A validation of the testing methodology.

Furthermore, the results of the tests may be useful in their own right, for example for a third party wishing
to reuse individual components of the current mF2C software.

5.3.2 Security test implementation

The two main tools used in these tests were Network Mapper (nmap [16]) and w3af, for testing,
respectively, network (ICMP) and web protocols. Figure 47 shows our first example of nmap in use; it has
correctly identified unexpected software listening on the smtp port and correctly identified it as Postfix.

Figure 47 Example of nmap

In the second example of using nmap (), below, we can see the sort of information that nmap is capable of
finding from ICMP scans. Note the SMTP (= email) server is listed here along with the commands that are
“alive” on it plus the name of the container network FQDN.

Figure 48 Traefik monitoring page exposed

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 54

Figure 49 Example 2 of use of nmap

This is a screenshot of the exposed Traefik proxy server admin page. It is not visible from a remote location
so anything exposed here is not a huge concern, but a compromised host or container could get useful
information from it, such as the hidden network address of the CIMI server, plus the name and version
number of the proxy server.

5.3.3 Overall result

Initial testing and analysis have uncovered a number of vulnerabilities, most of which were known
beforehand – as they have either not been implemented yet, or are out of scope for IT-1. There are some
actionable tasks from the security testing (see appendices for details):

 [KNOWN] There are no backups of data or systems software

 [KNOWN] There is no protection against denial of service attacks

 [KNOWN] There is no logging of security events and other important events

 [KNOWN] There is no audit trail of security events e.g. new user account

 [KNOWN] There is no alerting in real-time of security incidents in progress; in particular, there is no
botnet protection.

 [KNOWN] Physical tampering of edge devices is possible.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 55

 [NEW] The MQTT broker has no protection against snooping and fake data injection

 [NEW] Every user of the CIMI server has authorization set to “ADMIN”

 [NEW] The Docker network was misconfigured; exposing components to attack that had otherwise
no protection. The real issue, however, is that there is no detection of misconfiguration.

 [KNOWN] No implementation of data privacy.

 [KNOWN] No implementation of data compartmentalization or at-rest encryption.

As can be seen, most of the results are quite obvious: protection against botnets and denial of service were
not foreseen till IT-2; and, as mentioned above, the testing was done against a snapshot of the
development and fixes for many of these issues are already in progress. However, rediscovering the
vulnerabilities validates the testing and security analysis methodology.

5.3.4 Discussion

The IT-1 release is a proof of concept, and security was not a strong goal for this release as we are
expecting only to validate functionalities. However, we note that some components already have security
implemented, others are in the process of having them implemented. For a third party wishing to reuse
our components, they obviously cannot reuse them in a hostile environment (on the open Internet, say, or
in a foreign fog infrastructure) if the component has security vulnerabilities, or, in our analysis, we have
found that a subcomponent has a vulnerability classified as severe. Similarly, as the current release is
software-only, there is no physical protection of edge devices; it is left to the deployer to ensure that their
devices are protected against intrusion.

For example, the lack of support for privacy, particularly at this time when the GDPR (D2.4 section 2.4.1 and
Annex 8) is about to come into force, means handling personal data is not advised.

5.4 Testers Task Force

Testing mF2C components has been considered a primary task. This could help in increasing the quality of
software components and fulfilment to requirements. For this purpose, a specific testing task force has
been assembled, consisting of two software developers from Engineering.

The chosen people have competence in the mF2C software requirements and were involved later in the use
of mF2C components to develop one of the Use Cases. This kind of organization has several advantages:

 Chosen people participated in the mF2C software design, so have a knowledge of specifications and
expected behavior,

 These people are real users of the mF2C software components, which are going to use these
components to develop the Use Cases, so this activity would serve as additional training for them,
helping in acquiring more practical competence on mF2C software components.

A test report template has been defined and shared, to be used to document all tests. For each test case,
some information on pre-conditions (environment, assumptions, etc.) and user to be impersonated, with
related authorizations, have been registered, followed by the list of execution steps, expected and actual
results, according to the following:

Tester: <user to be impersonated>

Pre-conditions: <all information regarding environment, assumptions etc.>

Test Case

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 56

Step Step Description Expected Result Actual Result
(if different from expected)

Successful /Failed (opt Comments)

1 - Passed/fail

2

Table 5. Test case table

So, once each mF2C component was released, the corresponding content was can loaded from the mF2C
GitHub repository, and the test environment prepared according to the provided document. All information
about the environment, the executor and authorization profile was tracked, the corresponding output
included in the report, with the expected behavior. In case of different behavior, an analysis was performed
and the outcome registered as well.

The summary of tests is in the table below with name of mF2C component, tester, date, outcome.

component version date tester purpose outcome

COMPSs v.1.4 13/dec/2017 Paolo
Cocco

Installation test with Centos7
(with Docker installed) on the
COMPSs have to verify the
correct installation for the
application

Not passed

COMPSs v.1.4 13/dec/2017 Paolo
Cocco

Installation test with Centos6
(with Docker installed) on the
COMPSs have to verify the
correct installation for the
application

Not passed

COMPSs v.1.4 13/dec/2017 Paolo
Cocco

Installation test with Centos6
(with Docker installed) on the
COMPSs have to verify the
correct installation bypassing
the packages sign

passed

COMPSs v.1.4 13/dec/2017 Paolo
Cocco

Create and Execute of an
application image using Docker
container with COMPSs

passed

COMPSs v.1.4 13/dec/2017 Paolo
Cocco

Create and Execute of an
application image using Docker
container with COMPSs and
INSTALL ”realpath” command
(centos6)

Not passed

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 57

COMPSs v.1.4 13/dec/2017 Paolo
Cocco

Create and Execute of an
application using Docker
container with COMPSs
(Centos6). This test is execute
in correct way just for the
installation of “realpath”
command for un external
repository but failed for other
error

passed

COMPSs v.2.2 15/jan/2018 Paolo
Cocco

Test the VM appliance, with the
Hello World sample

passed

COMPSs v.2.2 15/jan/2018 Paolo
Cocco

Installation test with Centos6
(with Docker installed) on the
COMPSs have to verify the
correct installation

Not passed

COMPSs v.2.2 15/jan/2018 Paolo
Cocco

Installation test with Centos6
(with Docker installed) on the
COMPSs have to verify the
correct installation bypassing
the packages sign

passed

COMPSs v.2.2 15/jan/2018 Paolo
Cocco

Create and Execute of an
application image using Docker
container with COMPSs

Not passed

COMPSs v.2.2 15/jan/2018 Paolo
Cocco

Create and Execute of an
application image using Docker
container with COMPSs and
INSTALL ”realpath” command
(centos6)

Not passed

COMPSs v.2.2 15/jan/2018 Paolo
Cocco

Create and Execute of an
application using Docker
container with COMPSs
(Centos6). This test is execute
in correct way just for the
installation of “realpath”
command for un external
repository but failed for other
error

passed

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 58

DataClay v.1 30/jan/2018 Paolo
Cocco

Installation test on the dataClay
have to verify the correct
installation for the application.
Centos7 with Docker, java 8,
python installed, have java
class People, Person and
HelloPeople described in the
manual

passed

DataClay v.1 30/jan/2018 Paolo
Cocco

Installation test on the dataClay
have to verify the correct
installation for the application.
One Server with Centos7 with
Docker and One Client with
Ubuntu, java 8, python
installed, have java class
People, Person and HelloPeople
described in the manual.

Not passed -
Dataclay tries
to contact the
Docker image
instead of the
host

Service Manager v.1.1.2 1/dec/2017 Paolo
Cocco

Installation test for Service
Manager component have to
verify the correct installation
for the application. Ubuntu
16.04 vanilla with Docker
installed, and java8

passed

Service Manager v.1.1.2 1/dec/2017 Paolo
Cocco

Installation test for the Service
Manager have to verify the
correct installation and
dockerizing the application.
Ubuntu 16.04 vanilla with
Docker installed, and java8

passed

Table 6. Test results summary

Major issues have been communicated to the software developers for diagnostic purposes, and to speed-
up the software fixing; some issues has been recognized as network misconfiguration between different
dockerized components, so they were not able to connect each other.

 An additional effort, devoted to the understanding of the use of the mF2C components in real applications
like the Use cases, have been provided with a simplified version of the Use Case 3 main processing that,
given a position, search the list of Points of Interest nearby. This chunk of code uses both the COMPSs and
dataClay components. The resulting code has been validated by the COMPSs and dataClay software
experts, then published in GitHub as a reference [17].

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 59

References

[1] mF2C, "mF2C Project," [Online]. Available: http://www.mf2c-project.eu/.

[2] mF2C, "mF2C Project Deliverables - D2.6," [Online]. Available: http://www.mf2c-project.eu/d2-6-m6/.

[3] mF2C, "mF2C Project Deliverables - D3.3," [Online]. Available: http://www.mf2c-project.eu/d3-3-m9/.

[4] mF2C, "mF2C Project Deliverables - D4.3," [Online]. Available: http://www.mf2c-project.eu/d4-3-m9/.

[5] Containous, "Traefik," [Online]. Available: https://traefik.io/.

[6] I. GitHub, "GitHub," [Online]. Available: https://github.com/.

[7] I. Docker, "Docker," [Online]. Available: https://www.docker.com/.

[8] mF2C, "mF2C Docs," [Online]. Available: http://mf2c-project.readthedocs.io/.

[9] J. Martí, A. Queralt, D. Gasull, A. Barceló, J. Costa and T. Cortes, "Dataclay: A distributed data store for

effective inter-player data sharing," Journal of Systems and Software, vol. 131, no. 0164-1212, pp. 129

- 145, 2017.

[10] mF2C, "mF2C Project Deliverables - D3.5," [Online]. Available: http://www.mf2c-project.eu/d3-5-

m12/.

[11] S.Kahvazadeh, V.Barbosa, X.Masip-Bruin, E.Marín-Tordera, J.Garcia and R.Diaz, "Securing combined

Fog-to-Cloud System through SDN approach," in 4th Workshop on CrossCloud Infrastructures &

Platforms (ACM Digital Library), Belgrade, 2017.

[12] R. P. Foundation, "Raspberry Pi," [Online]. Available: https://www.raspberrypi.org/.

[13] Google, "Remote Procedure Calls," [Online]. Available: https://grpc.io/ .

[14] SixSq, "NuvlaBox," [Online]. Available: http://sixsq.com/products-and-services/nuvlabox/tech-spec.

[15] mF2C, "mF2C Project Deliverables - D2.4," [Online]. Available: http://www.mf2c-project.eu/d2-4-m4/.

[16] "Network Mapper," [Online]. Available: https://nmap.org/.

[17] "dataClay demo," [Online]. Available: https://github.com/mF2C/uc3-compss-dataclay-demo.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 60

Appendix 1: Start Application request

Content of a Start Application request in the Distributed Execution Runtime:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<startApplication>
 <ceiClass>es.bsc.compss.test.TestItf</ceiClass>
 <className>es.bsc.compss.test.Test</className>
 <methodName>main</methodName>
 <parameters>
 <params paramId="0">
 <direction>IN</direction>
 <type>OBJECT_T</type>
 <array paramId="0">
 <componentClassname>java.lang.String</componentClassname>
 <values>
 <element paramId="0">
 <className>java.lang.String</className>
 <value
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" xsi:type="xs:string">3
 </value>
 </element>
 </values>
 </array>
 </params>
 </parameters>
 <resources>
 <resource name="COMPSsWorker01:8080">
 <description>
 <memorySize>4.0</memorySize>
 <memoryType>[unassigned]</memoryType>
 <operatingSystemDistribution>[unassigned]</operatingSystemDistribution>
 <operatingSystemType>[unassigned]</operatingSystemType>
 <operatingSystemVersion>[unassigned]</operatingSystemVersion>
 <pricePerUnit>-1.0</pricePerUnit>
 <priceTimeUnit>-1</priceTimeUnit>
 <processors>
 <architecture>[unassigned]</architecture>
 <computingUnits>1</computingUnits>
 <internalMemory>-1.0</internalMemory>
 <name>[unassigned]</name>
 <propName>[unassigned]</propName>
 <propValue>[unassigned]</propValue>
 <speed>-1.0</speed>
 <type>CPU</type>
 </processors>
 <storageSize>-1.0</storageSize>
 <storageType>[unassigned]</storageType>
 <value>0.0</value>

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 61

 <wallClockLimit>-1</wallClockLimit>
 </description>
 </resource>
 <resource name="COMPSsWorker02:1200">
 <description>
 <memorySize>4.0</memorySize>
 <memoryType>[unassigned]</memoryType>
 <operatingSystemDistribution>[unassigned]</operatingSystemDistribution>
 <operatingSystemType>[unassigned]</operatingSystemType>
 <operatingSystemVersion>[unassigned]</operatingSystemVersion>
 <pricePerUnit>-1.0</pricePerUnit>
 <priceTimeUnit>-1</priceTimeUnit>
 <processors>
 <architecture>[unassigned]</architecture>
 <computingUnits>1</computingUnits>
 <internalMemory>-1.0</internalMemory>
 <name>[unassigned]</name>
 <propName>[unassigned]</propName>
 <propValue>[unassigned]</propValue>
 <speed>-1.0</speed>
 <type>CPU</type>
 </processors>
 <storageSize>-1.0</storageSize>
 <storageType>[unassigned]</storageType>
 <value>0.0</value>
 <wallClockLimit>-1</wallClockLimit>
 </description>
 </resource>
 </resources>
</startApplication>

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 62

Appendix 2: Single-server detailed security test results

Method of testing

We have tested the following components:

 cimi

 cimi proxy

 dataclay

 compss

 user-management

We have used the following tools to test the security of the components:

 nmap - for icmp-based port scanning

 w3af - for http-based vulnerability scanning

For the MQTT broker test we simply connected to the server without supplying any credentials and found
we were able to snoop on traffic or send data on any mqtt topic.

The tests that were used by the w3af tool are listed at the end of this appendix.

Analysis of results

There was one severe vulnerability found – the MQTT broker has no protection against snooping and fake
data injection.

No component or server has received a PASS rating.

Results

The column headings have the following meanings:

 Test description - the check that was performed

 Test result - the vulnerability - if found - is named. The results of the test are listed. If it was not
tested then Not Tested is entered here.

 Impact and probability - best practice for evaluating risk is to score the impact of a problem, score
the probability of the problem occurring and then multiply the two scores together. Here we have a
more informal approach. We assign Low, Medium and Severe values to this column (impact and
probability) then factor them together (in an informal way) to produce the next column, Severity.

 Severity - the calculated risk. We informally assign values of Low severity, Medium severity and
Severe.

Category - Analyzed into Confidentiality, Integrity and Availability.

Test description Test result Impact and
probability

Severity Category

Cimi server – check
for cache control of
https content.

Missing cache control for
HTTPS content

Low impact.
Low probability.

Low severity Integrity

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 63

User-management
component – check
for cache control of
https content.

Missing cache control for
HTTPS content

Low impact.
Low probability.

Low severity Integrity

User-management
component – check
for click-jacking. This
vulnerability tricks
users into clicking on
something that is not
what they think it is.

Vulnerable to click-
jacking.

Medium impact
Low probability

Low severity Integrity

CA server – check for
cache control of https
content.

Missing cache control for
HTTPS content

Low impact.
Low probability.

Low severity Integrity

CA server – check for
click-jacking. This
vulnerability tricks
users into clicking on
something that is not
what they think it is.

Vulnerable to click-
jacking.

Medium impact
Low probability

Low severity Integrity

Restrict software that
can be run on the
host server without
authorization

There is no restriction on
what can run outside of
the controls provided by
Compss (i.e. at the
operating system level).
However local access
would probably be
required to run anything.

The software that
runs might be
malicious. Impact
medium.
Probability low.

Low severity
(not
demonstrated)

Integrity

Restrict software that
can be run on the
server via autorun on
usb and cd drives

Autorun is not often
enabled, but where it is
an attack can be done
easily if it is possible to
get physical access to the
server to insert a CD or
usb stick.

The software that
runs might be
malicious. Impact
medium.
Probability low.

Low severity
(not
demonstrated)

Integrity

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 64

Attempt to connect
to an MQTT broker,
attach to a topic and
listen in to data or
send data without
authorization.

The MQTT broker has no
checks on what can
connect to a topic and
send or receive
messages.

Fake messages can
be sent.
Confidential data
can be snooped.
Impact very
variable.
Probability
medium

Severe. Confidentiality.
Integrity.

Check host server for
vulnerabilities

The host server was
found to have several
open ports not used by
mf2c but these were not
serious vulnerabilities.

The host server
must be checked in
the same way as
the containers.
If the host server is
compromised it
can access the
containers used by
mf2c and view
secrets or alter
data.
Impact high.
Probability low.

Low severity Integrity

The following test cases were performed using w3af:

w3af plugin name Description

 blind_sqli Identify blind SQL injection vulnerabilities.

 buffer_overflow Find buffer overflow vulnerabilities.

 cors_origin Inspect if application checks that the value of the "Origin" HTTP header is
consistent with the value of the remote IP address/Host of the sender of the
incoming HTTP request.

 csrf Identify Cross-Site Request Forgery vulnerabilities.

 dav Verify if the WebDAV module is properly configured.

 eval Find insecure eval() usage.

 file_upload Uploads a file and then searches for the file inside all known directories

 format_string Find format string vulnerabilities.

 frontpage Tries to upload a file using frontpage extensions (author.dll).

 generic Find all kind of bugs without using a fixed error database.

 global_redirect Find scripts that redirect the browser to any site.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 65

 htaccess_methods Find misconfigurations in Apache's "<LIMIT>" configuration.

 ldapi Find LDAP injection bugs.

 lfi Find local file inclusion vulnerabilities.

 mx_injection Find MX injection vulnerabilities.

 os_commanding Find OS Commanding vulnerabilities.

 phishing_vector Find phishing vectors.

 preg_replace Find unsafe usage of PHPs preg_replace.

 redos Find ReDoS vulnerabilities.

 response_splitting Find response splitting vulnerabilities.

 rfi Find remote file inclusion vulnerabilities

 rosetta_flash Find Rosetta Flash vulnerabilities in JSONP endpoints

 shell_shock Find shell shock vulnerabilities.

 sqli Find SQL injection bugs.

 ssi Find server side inclusion vulnerabilities

 ssl_certificate Check the SSL certificate validity (if https is being used).

 un_ssl Find out if secure content can also be fetched using http.

 websocket_hijacking Detect Cross-Site WebSocket hijacking vulnerabilities.

 xpath Find XPATH injection vulnerabilities

 xss Identify cross site scripting vulnerabilities.

 xst Find Cross Site Tracing vulnerabilities.

 afd Find out if the remote web server has an active filter (IPS or WAF).

 allowed_methods Enumerate the allowed methods of an URL.

 detect_reverse_proxy Find out if the remote web server has a reverse proxy.

detect_transparent_proxy Find out if your ISP has a transparent proxy installed.

 dns_wildcard Find out if www.site.com and site.com return the same page.

 domain_dot Send a specially crafted request with a dot after the domain(http://host.tld./)
and analyze response.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 66

 favicon_identification Identify server software using favicon.

 find_jboss Find default Jboss installations.

 find_vhosts Modify the HTTP Host header and try to find virtual hosts.

 fingerprint_WAF Identify if a Web Application Firewall is present and if possible identify the
vendor and version.

 fingerprint_os Fingerprint the remote operating system using the HTTP protocol.

 frontpage_version Search FrontPage Server Info file and if it finds it will determine its version.

 halberd Identify if the remote server has HTTP load balancers. This plugin is a wrapper
of Juan M. Bello Rivas' halberd.

 hmap Fingerprint the server type, i.e apache, iis, tomcat, etc.

 http_vs_https_dist Determines the network distance between the http and https ports for a
target

 php_eggs Fingerprint the PHP version using documented easter eggs that exist in PHP.

 server_header Identify the server type based on the server header.

 server_status Find new URLs from the Apache server-status cgi.

 werkzeug_debugger Detect if Werkzeug's debugger is enabled.

 basic_auth Bruteforce HTTP basic authentication.

 form_auth Bruteforce HTML form authentication.

 analyze_cookies Grep every response for session cookies sent by the web application.

 blank_body Find responses with empty body.

 cache_control Grep every page for Pragma and Cache-Control headers.

 click_jacking Grep every page for X-Frame-Options header.

 code_disclosure Grep every page for code disclosure vulnerabilities.

 content_sniffing Check if all responses have X-Content-Type-Options header set

 credit_cards This plugin detects the occurrence of credit card numbers in web pages.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 67

 cross_domain_js Find script tags with src attributes that point to a different domain.

 csp Identifies incorrect or too permissive Content Security Policy headers.

 directory_indexing Grep every response for directory indexing problems.

 dom_xss Grep every page for traces of DOM XSS.

dot_net_event_validation

 Grep every page and identify the ones that have view state and don't have
event validation.

 error_500 Grep every page for error 500 pages that haven't been identified as bugs by
other plugins

 error_pages Grep every page for error pages.

 feeds Grep every page and finds rss, atom, opml feeds.

 file_upload Find HTML forms with file upload capabilities.

 form_autocomplete Grep every page for detection of forms with 'autocomplete' capabilities
containing password-type inputs.

 get_emails Find email accounts.

 hash_analysis Identify hashes in HTTP responses.

 html_comments Extract and analyze HTML comments.

 http_auth_detect Find responses that indicate that the resource requires auth.

 http_in_body Search for HTTP request/response string in response body.

 lang Read N pages and determines the language the site is written in.

 meta_tags Grep every page for interesting meta tags.

 motw Identify whether the page is compliant to mark of the web.

 objects Grep every page for objects and applets.

 oracle Find Oracle applications.

 password_profiling Create a list of possible passwords by reading HTTP response bodies.

 path_disclosure Grep every page for traces of path disclosure vulnerabilities.

 private_ip Find private IP addresses on the response body and headers.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 68

 ssn This plugin detects the occurrence of US Social Security numbers in web
pages.

 strange_headers Grep headers for uncommon headers sent in HTTP responses.

 strange_http_codes Analyze HTTP response codes sent by the remote web application.

 strange_parameters Grep the HTML response and find URIs that have strange parameters.

 strange_reason Analyze HTTP response reason (Not Found, Ok, Internal Server Error).

 strict_transport_security Check if HTTPS responses have the Strict-Transport-Security header set.

 svn_users Grep every response for users of the versioning system.

 symfony Grep every page for traces of the Symfony framework.

 url_session Finds URLs which have a parameter that holds the session ID.

 user_defined_regex Report a vulnerability if the response matches a user defined regex.

 wsdl_greper Grep every page for web service definition files.

 xss_protection_header Grep headers for "X-XSS-Protection: 0" which disables security features inthe
browser.

 web_spider Crawl the web application.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 69

Appendix 3: Cross-system detailed security test results

Method of testing

We used w3af and nmap scans to search for vulnerabilities in CIMI and other components.

By inspection we were able to see that many security functions have not been implemented.

For a list of security functions refer to Deliverable D2.4 Security/Privacy Requirements and Features,
paragraph 3.1.

Analysis of results

There were three severe vulnerabilities found:

 The docker network was misconfigured exposing components to attack that had no protection

 There are no backups of systems software

 There is no protection against denial of service attacks

There was one PASS – data in flight is protected by https connections in all components examined.

Results

For a description of the column headings refer to Appendix 2.

Test
description

Test result Impact and probability Severity Category

Denial of
Service –
various
attacks

There is no rate-limiting
anywhere in the system

DoS successful – systems
will be unusable.
Very likely to eventually
appear in an attack

Severe (not
demonstrated)

Availability

Backups of
systems
software.

The CA servers have
limited backups of data,
configuration and
software.
Other systems software
is usually generated on
demand from images
stored on docker-hub.
Configuration and
necessary data eg
certificates, will be lost.

Disruption to services
while CA servers are
restored and rebuilt.
Probability low.
Minor disruption while
other systems software is
regenerated from images.
Probability low.

Medium.
Low.

Availability

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 70

Configuration
of the docker
network must
be correctly
set up.
Scan the
network
topology using
nmap and
view the
docker
network
configuration
files directly.

The docker network for
the standard cimi
deployment via docker-
compose.yml was found
to be incorrect and
exposed other
components to the
Internet that should not
have been. In particular
they expose Rest
interfaces that have no
authentication.

A scan will reveal the
presence of exposed
ports. Probability high.
The ports can be
connected to from a
remote location without
credentials and control
commands injected
without authorization.
Probability high.

Severe Confidentiality.
Integrity
Availability.

Validation of
the
configuration
of the docker
network.

There are no checks
anywhere in the system
for serious
misconfigurations.

Misconfiguration can
result in the exposure of
severe vulnerabilities.
Probability medium.

Medium
severity.

Integrity

After a
component
has been
compromised
an outbound
attack can be
made e.g. to
extend the
compromised
by attacking
other
components,
or to attack
other systems
not involved
with mf2c.

 Not tested

Scan the
docker
network for
unexpected
software
running.

An smtp server was
found listening in the
cimi container. It was
possible to connect to it
via telnet and run simple
commands. It was not
possible to do any
further attacks from this
base e.g. smtp relay.

Unintended software
listening on ports within a
container can increase the
attack surface. The impact
can be very variable. In
this case the impact was
low.
Probability low.

Low severity. Integrity

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 71

Intercept data
in flight by
connecting to
copper cable

Data in flight is mostly
protected by https
connections.

Ability to sniff passwords
etc.

PASS Confidentiality.
Integrity.

Unauthorized
access to data
at rest by host
server or
compromised
neighboring
containers.

Data at rest is not
encrypted and is not
signed against
tampering.
To protect data at rest it
is necessary for the
server to also be secured
in the normal way.
The level of protection of
the server is dealt with
elsewhere.
We were not able to
demonstrate this
vulnerability however.

Data at rest can include
credentials leading to an
elevation of privilege
attack.
It can contain private
information leading to a
regulatory breach.
Modification of data at
rest can include the
configuration settings for
components leading to
various attacks.
Impact severe.
Probability low

Medium
severity (not
demonstrated)

Confidentiality.
Integrity.

Use of ENV
variables in
docker

We are not testing for
this vulnerability because
temporarily it is actually
in use for development
purposes.
Note that it would be
necessary to have local
access to the host server
to be able to view the
ENV content.

Passwords passed via ENV
variables can be sniffed
and used.
Impact severe.
Probability low.

Severe (not
demonstrated)

Confidentiality

Only the
authorized
local unix user
accounts are
able to control
docker.
Inspect the
/etc/groups
file to confirm
that only the
expected unix
accounts are
in the docker
group.

The expected unix
accounts were in the
docker group.

If docker can be
controlled by
unauthorized users then
data within a container
can be directly viewed or
modified.
Impact severe.
Probability low.

Medium
severity.

Confidentiality
Integrity

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 72

Transfer of
dataClay data
to another
dataClay
instance in an
insecure zone
run by a
malicious host
server, leading
to
unauthorized
access to data
at rest.

Within dataClay the data
at rest is not encrypted
and is not signed against
tampering.
We were not able to
demonstrate this
vulnerability however.

Data at rest can include
credentials leading to an
elevation of privilege
attack.
It can contain private
information leading to a
regulatory breach.
Modification of data at
rest can include the
configuration settings for
components leading to
various attacks.
Impact severe.
Probability low

Medium
severity (not
demonstrated)

Confidentiality.
Integrity.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 73

Appendix 4: Security architecture competence results

Method of analysis

By inspection we were able to see that many security functions have not been implemented.

For a list of security functions refer to Deliverable D2.4 Security/Privacy Requirements and Features,
paragraph 3.1.

Analysis of results

There were four severe vulnerabilities found:

 There is no logging of security events and other important events

 There is no audit trail of security events e.g. new user account

 There is no alerting in real-time of security incidents in progress

 Physical tampering is possible of any hardware outside of a secure computer room

 There was one PASS rating for a process to restrict who can make changes to systems software.

Discussion

Almost all of the necessary security functionality is missing. This makes it impossible to secure the system.
For example, although we have SSL/TLS in use to secure data in flight, if the systems at either end are
vulnerable the resulting security is no better than the weakest component.

Results

For a description of the column headings refer to Appendix 2.

Test description Test result Impact and probability Severity Category

Logging of
security events
and important
other events

There is no logging at all in
some components.
Logs are not gathered in a
central secure place e.g. a
syslogger machine.
Logs cannot be searched.
Logs are not stored.

Attacks are unlikely to be
detected if logs are not
generated or are not stored
centrally for analysis. This
leads to attacks being
successful.
Probability high.

Severe Integrity

Auditing of
security events

There is no audit trail
generated anywhere in the
system of security events
e.g. new user created.
Audit trail is not gathered
into a central location.
Audit trail is not
searchable.
Legal admissibility of
evidence from audit trail is
zero.

Audit trails are essential for
following the course of a
breach of security or privacy.
Audit trails are essential for
criminal prosecution of
hackers.
Probability high.

Severe Integrity

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 74

Alerting in real
time of
significant
security events.

There is no alerting
anywhere in the system of
security events.

Alerts are essential for rapid
response to a security
situation. If sysadmins are
unaware of a problem then a
security breach is likely to
succeed.
Probability high

Severe Integrity

Human process
to deal with
security
breaches.

There are no policies or
procedures to deal with
security breaches or other
problems.

Humans will not know how to
react correctly to a security
breach with a significant
probability that it will be
covered up because it is
embarrassing. Also evidence
required for a prosecution of
a hacker is likely to be made
inadmissible.
Impact medium.
Probability high.

Medium
severity.

Integrity
Availability

Process to
restrict changes
of systems
software to
authorized
people only

There is a human process
during the development
phase of the project
(through accounts with
access to github and
docker-hub) but there is
no human process for the
production phase and no
security controls in place
to enforce it.
Once the software is
deployed to the target
server it is necessary for
the server to be secured in
the normal way.
The development phase is
adequately protected.
The production phase
does not have any
protections at the
moment, though this is
acceptable at this stage of
the project.
The level of the protection
of the server is dealt with
elsewhere.

If there are no controls on
changes to systems software
a hacker could substitute a
malicious program.
Probability low.

PASS Integrity

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 75

The inbound
network access is
controlled by a
firewall

There are no dedicated
firewall devices anywhere
in the system.
Docker has a simplistic
firewall that does not
forward any port that is
not explicitly declared,
which means containers
are protected. But the
host server will not be
protected.

Network users can run scans
for unprotected ports and
access ports that should not
have been exposed. Impact
medium. Probability high.

Medium
severity

Confidentiality
Integrity

Patching of
known software
vulnerabilities

There is no patching of
vulnerable programs at
the moment.

Lack of patching increases the
risk of a security breach.
Impact very variable.
Probability medium

Medium
severity

Integrity
Availability

Vulnerability to
viruses

There is no antivirus
service anywhere in the
system.

Infection with a virus could
have a variable impact.
Probability low.

Low
severity

Integrity

Impersonate the
identity of a
device.
The PKI
Certificate
contains a FQDN
but this is
assigned in an
informal way that
means it is
unreliable as
Identity. The
Beacon / CAU
function assigns
an ID that is
loosely tied to a
human email
address.

The Certificate and Beacon
device ID can be cloned
and used for an
impersonation attack if
they are viewed so are
dependent on the device
being resistant to physical
tampering.

Impersonating a device is not
usually useful in an attack,
but for a safety-critical
system this may be
important.
Probability medium.

Medium
severity

Confidentiality
Integrity

Physical
tampering with a
device in an
exposed location
to get root or
steal credentials

Any hardware that is not
in a secure, locked
computer-room is
vulnerable to physical
tampering.

Credentials can be stolen,
configurations altered and
software tampered with.
Impact very severe.
Probability high

Severe Confidentiality
Integrity
Availability

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 76

Appendix 5: Business function security test results

Method of testing

By inspection we were able to see that many security functions have not been implemented.

Analysis of results

There were severe vulnerabilities in all tests we examined. There were no PASS results.

Discussion

These results mean that it is not possible to operate a business for a long period of time with this software
due to the severity of the problems that are likely to eventually occur. There would be regulatory non-
compliance (GDPR) and damage to business reputation.

Results

For a description of the column headings refer to Appendix 2.

Test description Test result Impact and probability Severity Category

Backups of data.

There are no backups of data Data loss certain when
storage fails.
Low probability in most
systems

Severe Availability

In the event of
hardware failure or
major systems
problems, business
continuity is possible

There are no backups of data
or systems so data would be
lost in the event of hardware
failure etc. Business
continuity not possible.

Severe impact on the
business from lost data
and non-availability of
hardware.
Probability medium.

Severe Availability

The privacy of humans
is protected at all
times (for GDPR
compliance)

Security vulnerabilities listed
in Appendix D mean that it is
not possible to protect their
privacy.

Non-compliance with
GDPR and possible
fines.
Probability almost
certain.

Severe Confidentiality

Business reputation is
protected by integrity
of the systems.

Security vulnerabilities listed
above mean that it is not
possible to protect business
reputation.

Lost business and
revenue.
Probability medium.

Severe Integrity

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 77

Appendix 6: Threat model reference

We use the STRIDE threat model3,4,5.

For a description of STRIDE’s relevance to mF2C refer to Deliverable D2.4 Security/Privacy Requirements
and Features, paragraph 2.1.1.

To use Threat Modelling, the threats are categorized in a way that is easily understood (i.e. STRIDE). They
are connected in a simple way and this model is then used to drive the security remediation work. The
strength of this model is that it is seen from an attacker’s viewpoint.

Following is a description of the Stride topics:

Stride topic Examples

Spoofing Impersonating another’s identity
Stealing another’s credentials
Making a connection that is fake to a service

Tampering Altering data, viewing data
Stealing credentials
Opening a physical piece of hardware to access the storage device

Repudiation Denying having performed an action, but there is no way the system can prove it was
done, usually due to lack of an audit trail

Information
disclosure

Revealing information to someone who is not supposed to access to it

Denial of service Block access to a service for everyone by overwhelming it with fake requests

Elevation of
privilege

Getting access to something that has greater control over the system

Because of the character of the mF2C system, which involves the location of IoT devices and Fog servers in
physically exposed locations, we give more than normal attention to the topic of physical tampering.

We shall not produce a complete model, only a representative model, because of the amount of work
involved. Below is shown a very small part of the threat model so far produced.

3
 https://en.wikipedia.org/wiki/STRIDE_(security)

4
 https://www.owasp.org/index.php/Threat_Risk_Modeling

5
 https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 78

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 79

Appendix 7: Security architecture reference

A computer security model is a scheme for specifying and enforcing security policies. The security policies
are then enforced through security controls.

In this system, we are using an Information Flow security model in which data is held in discrete logical
compartments. It is compartmentalized based on classification and need to know. These are provided by
the ACLs.

The logical compartmentalization is provided by

 multiple intermediate Certification Authorities (CA) that have no trust of each other

 network compartmentalization

 encrypted containers that use the keypairs provided by the CAs.

Logical compartment Partitioning by...

Layered software Cloud versus Fog versus Use Case application versus Device

CA Separate CAs for Fog servers versus IoT devices.

Keypairs  Separate keys for each device or server
 Frequent renewal of keys
 ACLS

Network Subnet and gateway/firewall

The purpose of compartmentalizing data is to limit damage due to compromise. It also fits in with the
character of Internet of Things processing which is primarily a dataflow.

Security policies are enforced through security mechanisms. In this system, we use a small set of security
mechanisms (except for physical security which requires multiple layers of security and human
supervision).

Type of security mechanism Example

Physical security Secure computer-room, encrypted data

Public Key Infrastructure Encryption, Identity, revocation of access

ACLs Grant or deny access in a fine-grained way

Gateways Acts as firewall, network gateway and Policy Enforcement Point.

mF2C – Towards an Open, Secure, Decentralized and Coordinated Fog-to-Cloud Management Ecosystem

D5.1 mF2C reference architecture (integration IT-1) Page 80

Appendix 8: Privacy tests detailed results

Method of testing

We were not able to test the privacy of the system due to lack of time.

Analysis of results

Elsewhere in this document, we note that because the security of the system is very weak it is not possible
to provide privacy. However, no tests have been performed to verify this with facts, so it has been rated as
Not Tested.

It seems that the components do not handle any Personally Identifiable Information (PII) so would be out of
scope of the GDPR. However physical location is considered PII and there is a possibility this may be held in
the system. Further checks are necessary.

Devices are assumed to be Internet of Things devices and smartphones. They are very likely to hold PII. We
shall not consider them here but will do so with the Use Case applications in Deliverable D5.3.

Results

For a description of the column headings refer to Appendix 2.

Test description Test
result

Impact and
probability

Severity Category

Do components handle any data that can be
Personally Identifiable Information (PII)?
Check that it is not disclosed to unauthorized humans
or systems.

 Not
tested

Do devices handle any PII?
Check that it is not disclosed to unauthorized humans
or systems.

 Not
tested

