Distributed Key Management in Microgrids

Micro sElf-orgaNiSed mAnagement (MENSA)

Prof. Christos Xenakis Department of Digital Systems University of Piraeus, Greece. Email: <u>xenakis@unipi.gr</u> Vaios Bolgouras, Christoforos Ntantogian, Emmanouil Panaousis, Christos Xenakis, "<u>Distributed</u> <u>Key Management in Microgrids.</u>" *IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp.* 2125-2133, March 2020.

SealedGRID: Scalable, trusted, and interoperable platform for secured smart grid

Horizon 2020 European Union funding for Research & Innovation

Co-funded by the Horizon H2020 Framework Programme of the European Union under grant agreement no 777996.

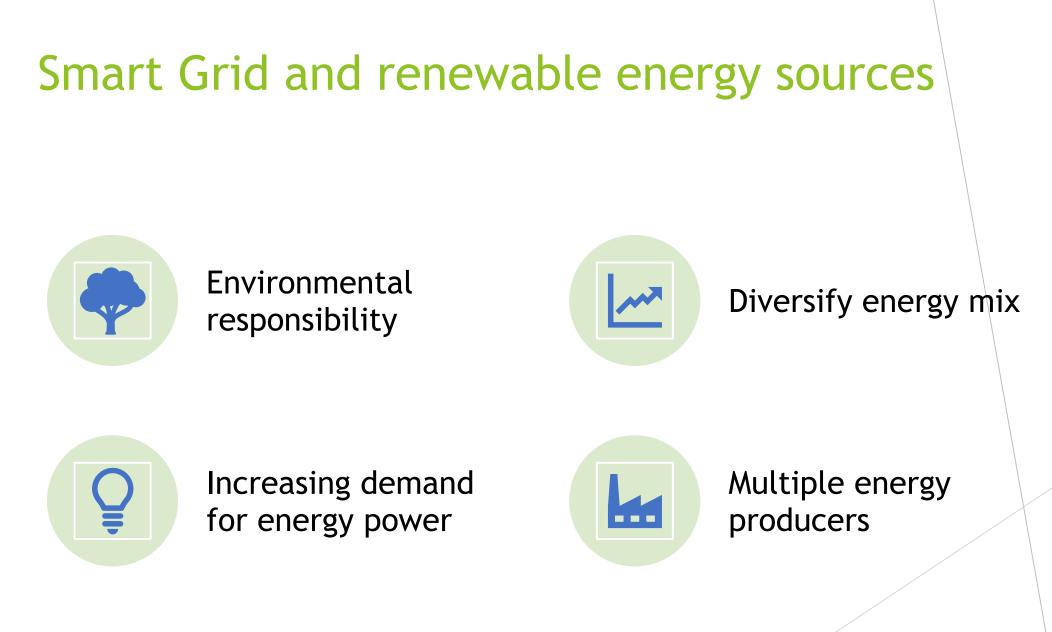
https://www.sgrid.eu/

Facebook: https://www.facebook.com/SealedGRIDH2020/

Twitter: https://twitter.com/sealedgridh2020?lang=en

LinkedIn: <u>https://www.linkedin.com/in/sealedgrid-project-98246b187/</u>

YouTube: <u>https://www.youtube.com/channel/UC7k6Lz_RgV9GDPYyTi8qtTA</u>


SealedGRID: Scalable, trusted, and interoperable platform for secured smart grid

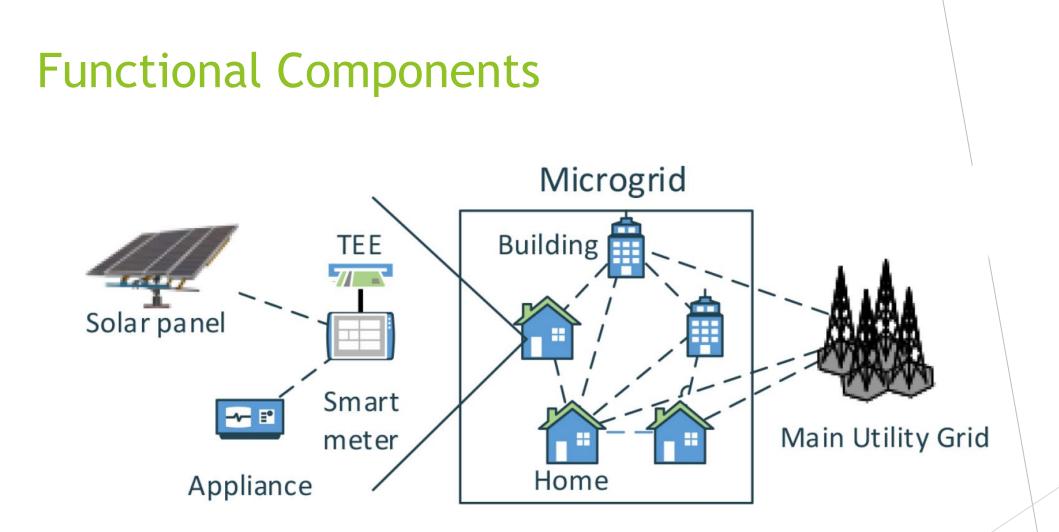
Horizon 2020 European Union funding for Research & Innovation

Co-funded by the Horizon H2020 Framework Programme of the European Union under grant agreement no 777996.

Microgrids

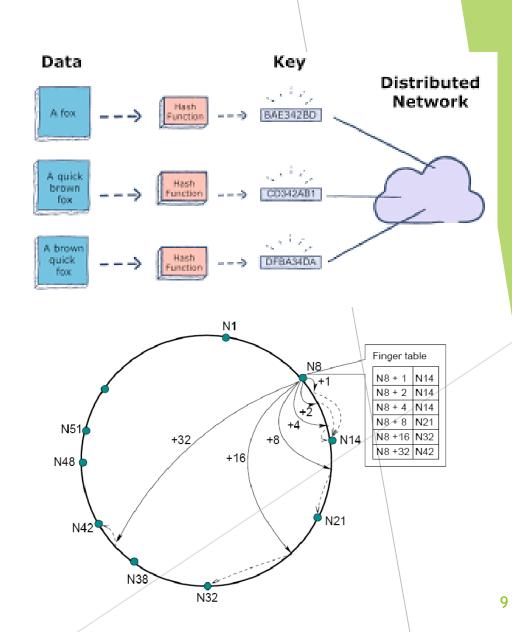
- A microgrid is formed by a group of electricity producers and consumers
- Typically connected to a Smart Grid
- Can operate autonomously in an "islanded" mode
- Network of interconnected smart devices
- Bidirectional M2M communication
- Power consumption-oriented smart applications

Challenges for Key Management in Microgrids

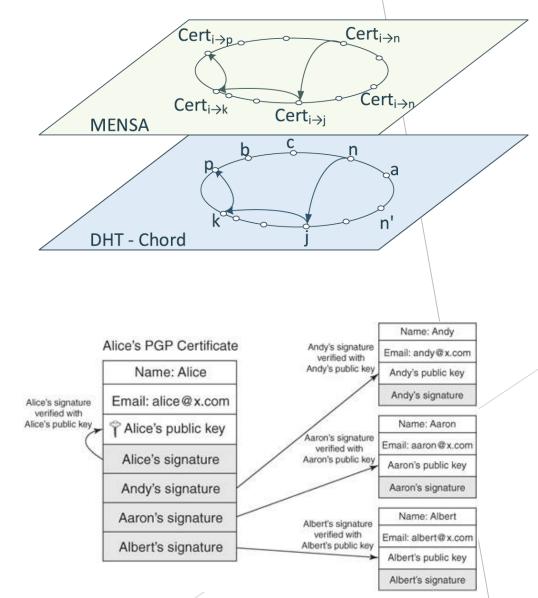

- C1: High churn rate (frequent join & leave of nodes), causes overhead to centralized structures & solutions
- C2: Compromised Certification Authority (CA)
 - Revocation of all issued certificates
 - Impairment of information exchange
- **C3: Dependability** to the CA

- Unable to validate certificates if connectivity with the CA is lost
- C4: The CA constitutes a single point of failure

MENSA: Micro sElf-orgaNiSed mAnagement

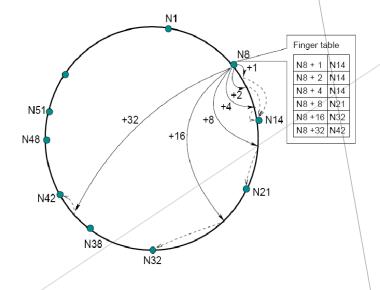

- Distributed & scalable key management and authentication scheme for microgrids
- Hybrid solution utilizing Public Key Infrastructure and Web of Trust concepts
- Allows frequent actions of "Join" and/or "Leave" without impacting on the network's efficiency
- Compromised CA does not necessarily result in performing certificate revocation
- Network's operational continuity does not depend on the CA's availability
- No single point of failure due to decentralized nature

*Trusted Execution Environment resides in the smart meters

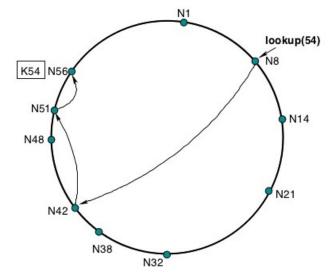

Technical Background

- Distributed Hash Tables DHT
 - key, value pairs are stored in a distributed manner among the network participants
 - Value is retrieved based on its paired key
- Chord Protocol
 - Defines key assignment to the network
 - Provides queries to locate the value of a corresponding key
 - "Finger Table" defines nodes that can be communicated with

MENSA Architecture


- Each node *n* possesses key pair Pk_n/Sk_n
- Pk_n/Sk_n follows the self-generated approach
- Overlay pair \rightarrow (*K*_n, *Cert*_n) as (key, value)
 - $K_n = h(Pk_n + ID_{device})$
 - Cert. follows the OpenPGP format
- **Finger tables** contain nodes that:
 - Hold position defined by Chord protocol
 - Possess a valid certificate
- If a wants to communicate with b
 - a retrieves b's certificate
 - ▶ if *a* trusts it or its trust path
 - ▶ *a* communicates with *b*

Node Join - node n


- *n's Cert*ⁿ should be signed by <u>at least one</u> "Introducer" (trusted members of the structure)
- If the Cert, of the introducer is invalid, the process stops
- n verifies the validity of the Certs assigned to the nodes n's finger table by chord
- Each node in *n's figure table* also checks the validity of the node *n's Cert*.
- Validation can be also performed using remote attestation

```
Function nodeJoin(k)if Cert_i is valid thenwhile next (IP_k) to be stored in fingerTable<sub>n</sub>doif Cert_k is signed by introducer i then| // Cert_k is trustedn stores IP_k in fingerTable<sub>n</sub>endend
```

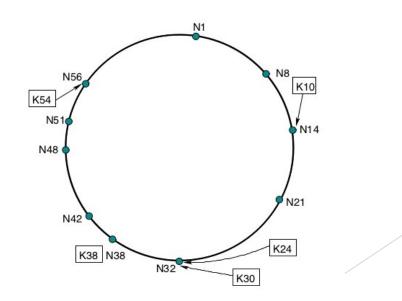

Normal Operation

- n accumulates signatures from multiple endorsers
- Operations not affected if an Introducer gets compromised, other endorsements are utilized
- Searches are executed as defined by the Chord protocol


```
Function n.find(n')
 if n' resides in n.fingerTable then
     // n' is trusted
     return success
 else
    send request to the next trusted node p closest to
     n' from node n
    if n' resides in p.fingerTable then
        // n' is trusted
        return success
    else
        send request to the next trusted node k
         closest to n' from node p
    end
 end
 // No trust chain was found
 return failure
Algorithm 2: Searching for another network node.
```

Certificate Revocation

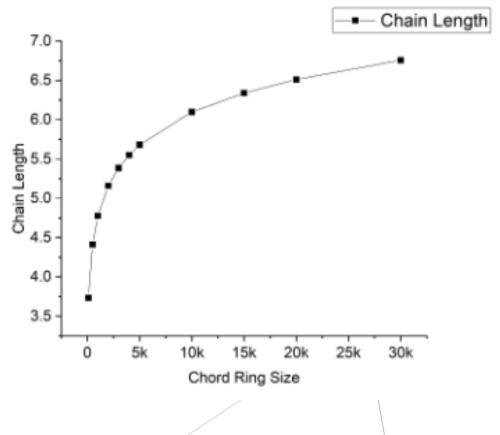
- There are three ways to revoke a Cert in MENSA
- 1st Implicitly, when a Cert expires



- Nodes with expired Certs will have to get through the verification process again
- 2nd Explicitly, by the owner using a revocation Cert, RevC_n (created together with Cert_n)
 - n sends its RevC_n to the nodes that are included in its figure table
- 3rd An empowered node is able to revoke n's Cert using RevCn
 - Misbehavior can be detected using specification-based methods + remote attestation
 - ▶ The *RevC*ⁿ is sent only to the nodes that have the leaving node in their finger tables
- Trusted Execution Environment is used to avoid abuse of revocation certificates

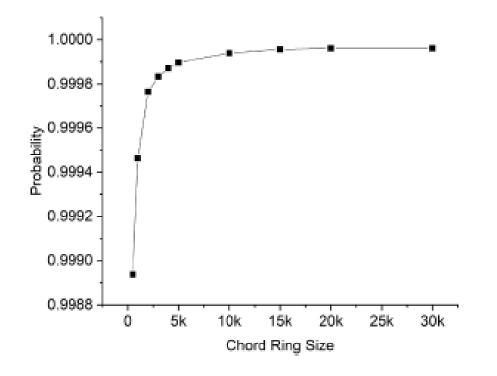
Node Leave

- Implicit or explicit certificate revocation
- **Re-organization** of finger tables
- Affected nodes will need to check the certificates of the newly assigned nodes

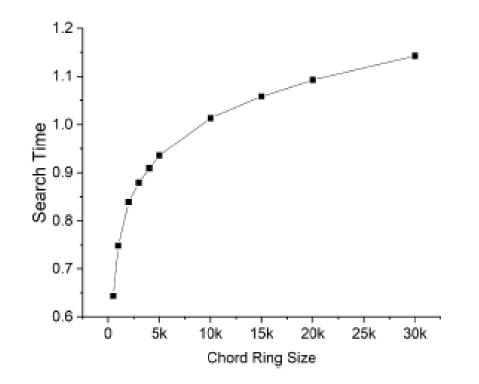

Evaluation - Node Join delay

- Scenario 1: Node Join time delay (0 30.000 nodes)
 - For 0 5.000 nodes the **delay is 1.55 sec**
 - ▶ While from 20.000 30.000 the **delay is 2.2 sec**
- The slight decline in performance is the byproduct of the overall increased requests

Negligible impact of signing and validation delays	N	fingerTable size
Minimal increase in nodes saved at finger tables O(log N)	500 5,000	8 12
MENSA is scalable	15,000 30,000	13 14
	•	
	5,000,000	22


Evaluation - Chain Length

- Scenario 2: Ordered list of certificates starting from the node initiating a look-up operation up to the target node
- Mean length of the chain of trust
- It includes the initiator & the target node
- Chain length varies from 1 5 nodes
- No significant changes are perceived in MENSA as the size of the grid increases


Evaluation - Probability of finding trust

The probability that two random nodes will be able to establish trust relationship between them

Evaluation - Search time

Average time needed for a random node to establish trust relationships with another random node

Conclusions

- MENSA is the first distributed hybrid key management and authentication system for microgrids
- ▶ It eliminates the need for a TTP, while ensures high availability
- > DHT is used for efficient discovery of trust relationships among the microgrid nodes
- It is a decentralized and flexible solution that promotes scalability and resilience
- Paves the way toward developing microgrids further and it will help realizing their full potential in terms of scalability and performance efficiency

Thank you!

Prof. Christos Xenakis Department of Digital Systems University of Piraeus, Greece. Email: <u>xenakis@unipi.gr</u>