

Blockchain-based Architectures for Food Supply Chain Management

<u>Spyros Voulgaris</u>, Nikos Fotiou, Vasilios A. Siris, George C. Polyzos

and

Artemios Tomaras, Sotiris Karachontzitis

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Food Supply Chain

Scenarios Considered

Cost Analysis

(anchoring)

(sensors)

Gas cost of periodic public ledger operations

(anchoring)

(anchoring)

Full day's operation (6000 boxes)

	Cost for 6000 boxes			Full-day periodic costs			Total
	Gas	Ether	EUR	Gas	Ether	EUR	EUR
Scenario 1	2040M	20.4	€4080	71.5M	0.715	€143	€4223
Scenario 2	0	0	€0	14.3M	0.143	€28	€28
Scenario 3	0	0	€0	57.2M	0.572	€114	€114
Scenario 4	0	0	€0	71.5M	0.715	€143	€143

(Assuming <u>€200 per ETH</u> and <u>10⁻⁸ ETH per gas unit</u>)

Throughput & Time Scalability

- Experiment
 - Submit 1000 boxes at once, and observe each scenario's processing speed
- Observations
 - □ 1000 boxes take:
 - Sc #1 → ~620sec
 - Sc #2 → ~540sec
 - Sc #3 → ~300sec
 - Sc #4 \rightarrow <unlimited>
 - □ Linear relation between #boxes and time
 - □ Throughputs
 - Sc #1 → 1.89 box/sec
 - Sc #2 → 2.22 box/sec
 - Sc #3 → 4.76 box/sec
 - throughput(Sc. #3) = 2.2 * throughput(Sc. #2)

Conclusions

- Using a public ledger only (Scenario #1)
 - □ is too expensive
 - daily: more than €4000 vs. less than €150
 - offers the highest possible data availability
- Using a single shared ledger (Scenario #2)
 - □ is the least expensive (anchoring becomes as low as it gets)
 - □ can have severe throughput limitations, especially for FSC with lots of branches and activity
- Using multiple shared ledgers (Scenario #3)
 - □ appears very appealing both w.r.t. cost as well as throughput and scalability
 - □ offers better privacy, as not all entities are involved in all blockchains
- Using local storage (Scenario #4)
 - □ has virtually no ledger-imposed speed limits
 - may result in lower data availability

Questions!

Evaluation

Evaluation Criteria

- Public Ledger operation costs
 in terms of "gas"
- Throughput
 - □ Number of boxes processed per time unit
- Scalability
 - cost
 - □ time
- Data Availability

Implementation Settings

- Ledger
 - Ethereum
 - Ganache for local, Ropsten for public
 - □ Remix and Truffle framework
- Local Ethereum configuration
 - □ 15sec block generation time
 - □ 10M gas units limit per block
- Other configuration
 - □ Sensor logging period: 5 minutes
 - Anchoring period: 5 minutes

Operations and Costs

Box entry				
Session ID	256 bits			
Employee ID	32 bits			
Time	32 bits			

Handover				
Empl_1 ID	32 bits			
Empl_2 ID	32 bits			
Weight	32 bits			
Time	32 bits			

M

Gas cost per operation

